Increasing intracellular releasable electrons dramatically enhances bioelectricity output in microbial fuel cells
Microbial fuel cell (MFC) is a sustainable energy source that can harvest electricity energy from organic wastes. However, its low electricity output remains the bottleneck for practical applications. Herein, we report a novel approach to increase extracellular electron transfer between bacteria and...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/99152 http://hdl.handle.net/10220/10873 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Microbial fuel cell (MFC) is a sustainable energy source that can harvest electricity energy from organic wastes. However, its low electricity output remains the bottleneck for practical applications. Herein, we report a novel approach to increase extracellular electron transfer between bacteria and anodes, thus enormously enhancing the bioelectricity output in MFCs. We find that the abolishment of the lactate synthesis pathway increases intracellular releasable electrons, which are subsequently transferred to the anode via a secreted diffusive electron shuttle. Thereby, such genetically modified strain delivers a much higher and more stable electricity output than its parental strain in MFCs. |
---|