Self-supporting three-dimensional ZnIn2S4/PVDF–poly(MMA-co-MAA) composite mats with hierarchical nanostructures for high photocatalytic activity

This paper reports the fabrication of self-supporting three-dimensional ZnIn2S4/PVDF–poly(MMA-co-MAA) (ZIS/Polymer) composite mats with hierarchical nanostructures by a simple combination of an electrospinning technique and a hydrothermal process and their high photocatalytic activity. The character...

Full description

Saved in:
Bibliographic Details
Main Authors: Peng, Shengjie, Zhu, Peining, Mhaisalkar, Subodh Gautam, Ramakrishna, Seeram
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/99164
http://hdl.handle.net/10220/17316
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This paper reports the fabrication of self-supporting three-dimensional ZnIn2S4/PVDF–poly(MMA-co-MAA) (ZIS/Polymer) composite mats with hierarchical nanostructures by a simple combination of an electrospinning technique and a hydrothermal process and their high photocatalytic activity. The characterization results show that ZnIn2S4 (ZIS) nanosheets with a thickness of about 20 nm distribute uniformly on the surface of the nanofiber polymers to form mats. The coverage density of the ZIS nanosheet coating on the surface of the polymer mats could be controlled by simply adjusting the amount ratios of feeding reactants to polymers. Furthermore, the growth process of ZIS coating is investigated based on time-dependent experiments. The obtained ZIS/Polymer heteroarchitectures show high photocatalytic property and stability to degrade methyl orange (MO) because of the formation of hierarchical nanostructures, which might improve the adsorption and catalysis of the dyes. Due to the self-supporting property of the mats, the ZIS/Polymer mats could be laid or hung conveniently anywhere under solar irradiation and recycled easily, which provides a solution to the separation problem for conventional catalysts that are small in size. The study may open a new way to build hierarchical device fabrics with optical and catalytic properties.