Semi-supervised dimension reduction using trace ratio criterion
In this brief, we address the trace ratio (TR) problem for semi-supervised dimension reduction. We first reformulate the objective function of the recent work semi-supervised discriminant analysis (SDA) in a TR form. We also observe that in SDA the low-dimensional data representation F is constraine...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/99184 http://hdl.handle.net/10220/13485 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In this brief, we address the trace ratio (TR) problem for semi-supervised dimension reduction. We first reformulate the objective function of the recent work semi-supervised discriminant analysis (SDA) in a TR form. We also observe that in SDA the low-dimensional data representation F is constrained to be in the linear subspace spanned by the training data matrix X (i.e., F = XT W). In order to relax this hard constraint, we introduce a flexible regularizer ||F - XT W||2 which models the regression residual into the reformulated objective function. With such relaxation, our method referred to as TR based flexible SDA (TR-FSDA) can better cope with data sampled from a certain type of nonlinear manifold that is somewhat close to a linear subspace. In order to address the non-trivial optimization problem in TR-FSDA, we further develop an iterative algorithm to simultaneously solve for the low-dimensional data representation F and the projection matrix W. Moreover, we theoretically prove that our iterative algorithm converges to the optimum based on the Newton-Raphson method. The experiments on two face databases, one shape image database and one webpage database demonstrate that TR-FSDA outperforms the existing semi-supervised dimension reduction methods. |
---|