Nonhemimaximal degrees and the high/low hierarchy
After showing the downwards density of nonhemimaximal degrees, Downey and Stob continued to prove that the existence of a low₂, but not low, nonhemimaximal degree, and their proof uses the fact that incomplete m-topped degrees are low₂ but not low. As commented in their paper, the construction of su...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/99244 http://hdl.handle.net/10220/17146 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | After showing the downwards density of nonhemimaximal degrees, Downey and Stob continued to prove that the existence of a low₂, but not low, nonhemimaximal degree, and their proof uses the fact that incomplete m-topped degrees are low₂ but not low. As commented in their paper, the construction of such a nonhemimaximal degree is actually a primitive 0''' argument. In this paper, we give another construction of such degrees, which is a standard 0''-argument, much simpler than Downey and Stob's construction mentioned above. |
---|