An adaptive spatial information-theoretic fuzzy clustering algorithm for image segmentation
This paper presents an adaptive spatial information-theoretic fuzzy clustering algorithm to improve the robustness of the conventional fuzzy c-means (FCM) clustering algorithms for image segmentation. This is achieved through the incorporation of information-theoretic framework into the FCM-type alg...
Saved in:
Main Authors: | Wang, Zhimin, Song, Qing, Soh, Yeng Chai, Sim, Kang |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/99253 http://hdl.handle.net/10220/17364 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Robust clustering algorithms for image segmentation and curve analysis
由: Wang, Zhimin
出版: (2010) -
An information theoretic kernel algorithm for robust online learning
由: Fan, Haijin, et al.
出版: (2013) -
Hybrid and adaptive genetic fuzzy clustering algorithms
由: LIU MING
出版: (2010) -
Information theoretic feature selection clustering
由: Quan, Yu Teng.
出版: (2012) -
Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation
由: Li, B.N., et al.
出版: (2014)