Multiview semi-supervised learning with consensus
Obtaining high-quality and up-to-date labeled data can be difficult in many real-world machine learning applications. Semi-supervised learning aims to improve the performance of a classifier trained with limited number of labeled data by utilizing the unlabeled ones. This paper demonstrates a way to...
Saved in:
Main Authors: | Li, Guangxia, Chang, Kuiyu, Hoi, Steven C. H. |
---|---|
其他作者: | School of Computer Engineering |
格式: | Article |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/99262 http://hdl.handle.net/10220/13512 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Multiview semi-supervised learning with consensus
由: LI, Guangxia, et al.
出版: (2012) -
Learning Bregman distance functions for semi-supervised clustering
由: Wu, Lei., et al.
出版: (2013) -
Semi-supervised federated heterogeneous transfer learning
由: Feng, Siwei, et al.
出版: (2022) -
Semi supervised learning with graph convolutional networks
由: Ong, Jia Rui
出版: (2019) -
Semi-supervised ensemble ranking
由: HOI, Steven C. H., et al.
出版: (2008)