Localized sclerotic bone response demonstrated reduced nanomechanical creep properties

Sclerosis (tissue hardening) development is a common occurrence in slow growing or benign osteolytic lesions. However, there is lack of knowledge on the mechanical and material property changes associated with sclerotic bone response. The immune system is postulated to play a relevant role in evokin...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Xiuli, Goh, James Cho Hong, Teoh, Swee-Hin, De, Shamal Das, Soong, Richie, Lee, Taeyong
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/99279
http://hdl.handle.net/10220/17315
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Sclerosis (tissue hardening) development is a common occurrence in slow growing or benign osteolytic lesions. However, there is lack of knowledge on the mechanical and material property changes associated with sclerotic bone response. The immune system is postulated to play a relevant role in evoking sclerotic bone responses. In this study, localized sclerotic response in an immunocompetent model of Walker 256 breast carcinoma in SD rats showed an apparent increase in new reactive bone formation. Sclerotic rat femurs had significant increases in bone mineral density (BMD), bone mineral content (BMC), bone volume fraction (BV/TV), bone surface density (BS/TV), trabecular number (Tb.N) and a significant decrease in trabecular separation (Tb.Sp) and structural model index (SMI) as compared to control rat femurs. Significantly reduced creep responses (increased η) were observed for both trabecular and cortical bone in sclerotic bones while no significant difference was observed in elastic modulus (E) and hardness (H) values. Therefore, we conclude that viscoelastic creep property using nanoindentation would serve as a more sensitive indicator of localized bone modeling than elastic properties. Moreover, reduced viscoelasticity can contribute towards increased microcrack propagation and therefore reduced toughness. Since significant positive correlations between elastic properties (E) and (H) with viscosity (η) were also observed, our results indicate that sclerotic response of bone metastasis would cause reduced toughness (increased η) with stiffening of material (increased E and H).