Adaptive fuzzy rule-based classification system integrating both expert knowledge and data

This paper presents an adaptive fuzzy rule-based classification system using a new hybrid modeling method that integrates both expert knowledge and new knowledge learnt from data. Inspired by human learning, the membership functions of fuzzy rules are optimized based on a hybrid error function that...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Ng, Gee Wah, Tang, Wenyin, Mao, Kezhi, Mak, Lee Onn
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2013
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/99301
http://hdl.handle.net/10220/12873
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:This paper presents an adaptive fuzzy rule-based classification system using a new hybrid modeling method that integrates both expert knowledge and new knowledge learnt from data. Inspired by human learning, the membership functions of fuzzy rules are optimized based on a hybrid error function that combines errors caused by the class predefined by expert knowledge and nearby historical data. The weights of the two errors can be adjusted by a conservative parameter. Experimental results show that our method significantly reduces classification ambiguity in 9 datasets.