Adaptive fuzzy rule-based classification system integrating both expert knowledge and data
This paper presents an adaptive fuzzy rule-based classification system using a new hybrid modeling method that integrates both expert knowledge and new knowledge learnt from data. Inspired by human learning, the membership functions of fuzzy rules are optimized based on a hybrid error function that...
Saved in:
Main Authors: | , , , |
---|---|
其他作者: | |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/99301 http://hdl.handle.net/10220/12873 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
總結: | This paper presents an adaptive fuzzy rule-based classification system using a new hybrid modeling method that integrates both expert knowledge and new knowledge learnt from data. Inspired by human learning, the membership functions of fuzzy rules are optimized based on a hybrid error function that combines errors caused by the class predefined by expert knowledge and nearby historical data. The weights of the two errors can be adjusted by a conservative parameter. Experimental results show that our method significantly reduces classification ambiguity in 9 datasets. |
---|