Adaptive fuzzy rule-based classification system integrating both expert knowledge and data
This paper presents an adaptive fuzzy rule-based classification system using a new hybrid modeling method that integrates both expert knowledge and new knowledge learnt from data. Inspired by human learning, the membership functions of fuzzy rules are optimized based on a hybrid error function that...
محفوظ في:
المؤلفون الرئيسيون: | Ng, Gee Wah, Tang, Wenyin, Mao, Kezhi, Mak, Lee Onn |
---|---|
مؤلفون آخرون: | School of Electrical and Electronic Engineering |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2013
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/99301 http://hdl.handle.net/10220/12873 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
Adaptive micro- and macro-knowledge incorporation for hierarchical text classification
بواسطة: Feng, Zijian, وآخرون
منشور في: (2024) -
The best of both worlds: integrating semantic features with expert features for defect prediction and localization
بواسطة: NI, Chao, وآخرون
منشور في: (2022) -
Bag-of-Concepts representation for document classification based on automatic knowledge acquisition from probabilistic knowledge base
بواسطة: Li, Pengfei, وآخرون
منشور في: (2020) -
Fuzzy bag-of-words model for document representation
بواسطة: Zhao, Rui, وآخرون
منشور في: (2020) -
Adaptive controller with fuzzy rules emulated structure and its applications
بواسطة: C. Treesatayapun, وآخرون
منشور في: (2018)