A multimedia retrieval framework based on semi-supervised ranking and relevance feedback
We present a new framework for multimedia content analysis and retrieval which consists of two independent algorithms. First, we propose a new semi-supervised algorithm called ranking with Local Regression and Global Alignment (LRGA) to learn a robust Laplacian matrix for data ranking. In LRGA, for...
Saved in:
Main Authors: | Yang, Yi, Nie, Feiping, Xu, Dong, Luo, Jiebo, Zhuang, Yueting, Pan, Yunhe |
---|---|
其他作者: | School of Computer Engineering |
格式: | Article |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/99348 http://hdl.handle.net/10220/13497 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Semi-supervised dimension reduction using trace ratio criterion
由: Huang, Yi, et al.
出版: (2013) -
Semi-supervised learning on large-scale geotagged photos for situation recognition
由: Mengfan Tang, et al.
出版: (2018) -
Image annotation with relevance feedback using a semi-supervised and hierarchical approach
由: Chiang, C.-C., et al.
出版: (2013) -
Semi-supervised ensemble ranking
由: HOI, Steven C. H., et al.
出版: (2008) -
Self-supervised online metric learning with low rank constraint for scene categorization
由: Cong, Yang, et al.
出版: (2013)