Empirical likelihood confidence intervals for nonparametric functional data analysis

We consider the problem of constructing confidence intervals for nonparametric functional data analysis using empirical likelihood. In this doubly infinite-dimensional context, we demonstrate the Wilk's phenomenon and propose a bias-corrected construction that requires neither undersmoothing no...

Full description

Saved in:
Bibliographic Details
Main Author: Lian, Heng
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2013
Online Access:https://hdl.handle.net/10356/99370
http://hdl.handle.net/10220/17246
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We consider the problem of constructing confidence intervals for nonparametric functional data analysis using empirical likelihood. In this doubly infinite-dimensional context, we demonstrate the Wilk's phenomenon and propose a bias-corrected construction that requires neither undersmoothing nor direct bias estimation. We also extend our results to partially linear regression models involving functional data. Our numerical results demonstrate improved performance of the empirical likelihood methods over normal approximation-based methods.