One-step solvothermal synthesis of single-crystalline TiOF2 nanotubes with high Lithium-ion battery performance
Single-crystalline TiOF2 nanotubes were prepared by a one-step solvothermal method. The nanotubes are rectangular in shape with a length of 2–3 μm, width of 200–300 nm, and wall thickness of 40–60 nm. The formation of TiOF2 nanotubes is directly driven by the interaction between TiF4 and oleic acid...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/99493 http://hdl.handle.net/10220/12922 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-99493 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-994932021-01-13T05:33:00Z One-step solvothermal synthesis of single-crystalline TiOF2 nanotubes with high Lithium-ion battery performance Zeng, Yi Zhang, Wenyu Xu, Chen Xiao, Ni Huang, Yizhong Y. W. Yu, Denis Hng, Huey Hoon Yan, Qingyu School of Materials Science and Engineering Energy Research Institute @ NTU (ERI@N) Single-crystalline TiOF2 nanotubes were prepared by a one-step solvothermal method. The nanotubes are rectangular in shape with a length of 2–3 μm, width of 200–300 nm, and wall thickness of 40–60 nm. The formation of TiOF2 nanotubes is directly driven by the interaction between TiF4 and oleic acid in octadecane to form the 1D nanorods, and this is followed by a mass diffusion process to form the hollow structures. The synthesis approach can be extended to grow TiOF2 nanoparticles and nanorods. Compared with TiO2, which is the more commonly considered anode material in lithium-ion batteries, TiOF2 has the advantages of a lower Li-intercalation voltage (e.g., to help increase the total voltage of the battery cell) and higher specific capacities. The TiOF2 nanotubes showed good Li-storage properties with high specific capacities, stable cyclabilities, and good rate capabilities. 2013-08-02T06:39:56Z 2019-12-06T20:08:03Z 2013-08-02T06:39:56Z 2019-12-06T20:08:03Z 2012 2012 Journal Article Zeng, Y., Zhang, W., Xu, C., Xiao, N., Huang, Y., Y. W. Yu, D., Hng, H. H.,& Yan, Q. (2012). One-Step Solvothermal Synthesis of Single-Crystalline TiOF2 Nanotubes with High Lithium-Ion Battery Performance. Chemistry - A European Journal, 18(13), 4026-4030. 0947-6539 https://hdl.handle.net/10356/99493 http://hdl.handle.net/10220/12922 10.1002/chem.201103879 en Chemistry - a European journal |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
description |
Single-crystalline TiOF2 nanotubes were prepared by a one-step solvothermal method. The nanotubes are rectangular in shape with a length of 2–3 μm, width of 200–300 nm, and wall thickness of 40–60 nm. The formation of TiOF2 nanotubes is directly driven by the interaction between TiF4 and oleic acid in octadecane to form the 1D nanorods, and this is followed by a mass diffusion process to form the hollow structures. The synthesis approach can be extended to grow TiOF2 nanoparticles and nanorods. Compared with TiO2, which is the more commonly considered anode material in lithium-ion batteries, TiOF2 has the advantages of a lower Li-intercalation voltage (e.g., to help increase the total voltage of the battery cell) and higher specific capacities. The TiOF2 nanotubes showed good Li-storage properties with high specific capacities, stable cyclabilities, and good rate capabilities. |
author2 |
School of Materials Science and Engineering |
author_facet |
School of Materials Science and Engineering Zeng, Yi Zhang, Wenyu Xu, Chen Xiao, Ni Huang, Yizhong Y. W. Yu, Denis Hng, Huey Hoon Yan, Qingyu |
format |
Article |
author |
Zeng, Yi Zhang, Wenyu Xu, Chen Xiao, Ni Huang, Yizhong Y. W. Yu, Denis Hng, Huey Hoon Yan, Qingyu |
spellingShingle |
Zeng, Yi Zhang, Wenyu Xu, Chen Xiao, Ni Huang, Yizhong Y. W. Yu, Denis Hng, Huey Hoon Yan, Qingyu One-step solvothermal synthesis of single-crystalline TiOF2 nanotubes with high Lithium-ion battery performance |
author_sort |
Zeng, Yi |
title |
One-step solvothermal synthesis of single-crystalline TiOF2 nanotubes with high Lithium-ion battery performance |
title_short |
One-step solvothermal synthesis of single-crystalline TiOF2 nanotubes with high Lithium-ion battery performance |
title_full |
One-step solvothermal synthesis of single-crystalline TiOF2 nanotubes with high Lithium-ion battery performance |
title_fullStr |
One-step solvothermal synthesis of single-crystalline TiOF2 nanotubes with high Lithium-ion battery performance |
title_full_unstemmed |
One-step solvothermal synthesis of single-crystalline TiOF2 nanotubes with high Lithium-ion battery performance |
title_sort |
one-step solvothermal synthesis of single-crystalline tiof2 nanotubes with high lithium-ion battery performance |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/99493 http://hdl.handle.net/10220/12922 |
_version_ |
1690658418113642496 |