Biorecognition on graphene : physical, covalent, and affinity immobilization methods exhibiting dramatic differences
The preparation of biorecognition layers on the surface of a sensing platform is a very crucial step for the development of sensitive and selective biosensors. Different protocols have been used thus far for the immobilization of biomolecules onto various electrode surfaces. In this work, we investi...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/99537 http://hdl.handle.net/10220/17492 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-99537 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-995372020-03-07T12:34:48Z Biorecognition on graphene : physical, covalent, and affinity immobilization methods exhibiting dramatic differences Bonanni, Alessandra Loo, Adeline Huiling Pumera, Martin School of Physical and Mathematical Sciences DRNTU::Science::Chemistry The preparation of biorecognition layers on the surface of a sensing platform is a very crucial step for the development of sensitive and selective biosensors. Different protocols have been used thus far for the immobilization of biomolecules onto various electrode surfaces. In this work, we investigate how the protocol followed for the immobilization of a DNA aptamer affects the performance of the fabricated thrombin aptasensor. Specifically, the differences in selectivity and optimum amount of immobilized aptamer of the fabricated aptasensors adopting either physical, covalent, or affinity immobilization were compared. It was discovered that while all three methods of immobilization uniformly show a similar optimum amount of immobilized aptamer, physical, and covalent immobilization methods exhibit higher selectivity than affinity immobilization. Hence, it is believed that our findings are very important in order to optimize and improve the performance of graphene-based aptasensors. 2013-11-08T06:40:58Z 2019-12-06T20:08:30Z 2013-11-08T06:40:58Z 2019-12-06T20:08:30Z 2013 2013 Journal Article Loo, A. H., Bonanni, A., & Pumera, M. (2013). Biorecognition on graphene : physical, covalent, and affinity immobilization methods exhibiting dramatic differences. Chemistry - an Asian journal, 8(1), 198-203. 1861-4728 https://hdl.handle.net/10356/99537 http://hdl.handle.net/10220/17492 10.1002/asia.201200756 en Chemistry - an Asian journal |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Chemistry |
spellingShingle |
DRNTU::Science::Chemistry Bonanni, Alessandra Loo, Adeline Huiling Pumera, Martin Biorecognition on graphene : physical, covalent, and affinity immobilization methods exhibiting dramatic differences |
description |
The preparation of biorecognition layers on the surface of a sensing platform is a very crucial step for the development of sensitive and selective biosensors. Different protocols have been used thus far for the immobilization of biomolecules onto various electrode surfaces. In this work, we investigate how the protocol followed for the immobilization of a DNA aptamer affects the performance of the fabricated thrombin aptasensor. Specifically, the differences in selectivity and optimum amount of immobilized aptamer of the fabricated aptasensors adopting either physical, covalent, or affinity immobilization were compared. It was discovered that while all three methods of immobilization uniformly show a similar optimum amount of immobilized aptamer, physical, and covalent immobilization methods exhibit higher selectivity than affinity immobilization. Hence, it is believed that our findings are very important in order to optimize and improve the performance of graphene-based aptasensors. |
author2 |
School of Physical and Mathematical Sciences |
author_facet |
School of Physical and Mathematical Sciences Bonanni, Alessandra Loo, Adeline Huiling Pumera, Martin |
format |
Article |
author |
Bonanni, Alessandra Loo, Adeline Huiling Pumera, Martin |
author_sort |
Bonanni, Alessandra |
title |
Biorecognition on graphene : physical, covalent, and affinity immobilization methods exhibiting dramatic differences |
title_short |
Biorecognition on graphene : physical, covalent, and affinity immobilization methods exhibiting dramatic differences |
title_full |
Biorecognition on graphene : physical, covalent, and affinity immobilization methods exhibiting dramatic differences |
title_fullStr |
Biorecognition on graphene : physical, covalent, and affinity immobilization methods exhibiting dramatic differences |
title_full_unstemmed |
Biorecognition on graphene : physical, covalent, and affinity immobilization methods exhibiting dramatic differences |
title_sort |
biorecognition on graphene : physical, covalent, and affinity immobilization methods exhibiting dramatic differences |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/99537 http://hdl.handle.net/10220/17492 |
_version_ |
1681042592773439488 |