Discretized-Vapnik-Chervonenkis dimension for analyzing complexity of real function classes
In this paper, we introduce the discretized-Vapnik-Chervonenkis (VC) dimension for studying the complexity of a real function class, and then analyze properties of real function classes and neural networks. We first prove that a countable traversal set is enough to achieve the VC dimension for a rea...
Saved in:
Main Authors: | Zhang, Chao, Bian, Wei, Tao, Dacheng, Lin, Weisi |
---|---|
其他作者: | School of Computer Engineering |
格式: | Article |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/99545 http://hdl.handle.net/10220/13524 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Analyzing hierarchical complex real-time systems
由: Liu, Y., et al.
出版: (2013) -
Erratum: On the dimensions of the binary codes of a class of unitals (Discrete Math. (2009) 309 (570-575))
由: Leung, K.H., et al.
出版: (2014) -
Spectral representations of discrete functions
由: Fu, Cheng
出版: (2011) -
Generalization bounds of ERM-based learning processes for continuous-time Markov chains
由: Zhang, Chao, et al.
出版: (2013) -
Learning a no-reference quality assessment model of enhanced images with big data
由: Gu, Ke, et al.
出版: (2020)