Cefalexin-immobilized multi-walled carbon nanotubes show strong antimicrobial and anti-adhesion properties

Multi-walled carbon nanotubes (MWNTs) possess weak antimicrobial property. In this report, we demonstrate that the covalent immobilization of the antibiotic cefalexin via poly(ethylene glycol) as a linking agent improves the antimicrobial and anti-adhesive properties of MWNTs against both Gram-negat...

Full description

Saved in:
Bibliographic Details
Main Authors: Qi, Xiaobao, Gunawan, Poernomo, Xu, Rong, Chang, Matthew Wook
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2013
Online Access:https://hdl.handle.net/10356/99578
http://hdl.handle.net/10220/12948
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Multi-walled carbon nanotubes (MWNTs) possess weak antimicrobial property. In this report, we demonstrate that the covalent immobilization of the antibiotic cefalexin via poly(ethylene glycol) as a linking agent improves the antimicrobial and anti-adhesive properties of MWNTs against both Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis). In particular, the MWNT-cefalexin composite showed 2-fold higher antimicrobial property than pristine MWNTs against S. aureus and B. subtilis. Moreover, the MWNT-cefalexin deposited film effectively inhibited cell adhesion. Given the simple, inexpensive procedures of our synthesis method, the MWNT-cefalexin composite has the potential to be used as an effective and economical antibacterial and anti-adhesion material for environmental and biomedical applications.