The effect of dentinal fluid flow during loading in various directions - simulation of fluid- structure interaction

Objectives This study uses a fluid–structure interaction (FSI) simulation to evaluate the fluid flow in a dental intrapulpal chamber induced by the deformation of the tooth structure during loading in various directions. Methods The FSI is used for the biomechanics simulation of dental intrapul...

Full description

Saved in:
Bibliographic Details
Main Authors: Su, Kuo-Chih, Chang, Chih-Han, Chuang, Shu-Fen, Ng, Eddie Yin-Kwee
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/99638
http://hdl.handle.net/10220/17466
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Objectives This study uses a fluid–structure interaction (FSI) simulation to evaluate the fluid flow in a dental intrapulpal chamber induced by the deformation of the tooth structure during loading in various directions. Methods The FSI is used for the biomechanics simulation of dental intrapulpal responses with the force loading gradually increasing from 0 to 100N at 0°, 30°, 45°, 60°, and 90° on the tooth surface in 1s, respectively. The effect of stress or deformation on tooth and fluid flow changes in the pulp chamber are evaluated. Results A horizontal loading force on a tooth may induce tooth structure deformation, which increases fluid flow velocity in the coronal pulp. Thus, horizontal loading on a tooth may easily induce tooth pain. Conclusion This study suggests that experiments to investigate the relationship between loading in various directions and dental pain should avoid measuring the bulk pulpal fluid flow from radicular pulp, but rather should measure the dentinal fluid flow in the dentinal tubules or coronal pulp. The FSI analysis used here could provide a powerful tool for investigating problems with coupled solid and fluid structures in dental biomechanics.