Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase
A direct electrochemical method to reduce single-layer graphene oxide (GO) adsorbed on the 3-aminopropyltriethoxysilane (APTES)-modified conductive electrodes is proposed. The reduced GO adsorbed on glassy carbon electrode was modified with glucose oxidase (GOx) by covalent bonding via a polymer gen...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/99644 http://hdl.handle.net/10220/8558 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | A direct electrochemical method to reduce single-layer graphene oxide (GO) adsorbed on the 3-aminopropyltriethoxysilane (APTES)-modified conductive electrodes is proposed. The reduced GO adsorbed on glassy carbon electrode was modified with glucose oxidase (GOx) by covalent bonding via a polymer generated by electrografting N-succinimidyl acrylate (NSA). The direct electron transfer between the electrode and GOx molecules was realized. The bioactivity of GOx maintains very well on the electrode. The thus-prepared GOx-modified electrode was successfully used to detect glucose. |
---|