Texture aware image segmentation using graph cuts and active contours

The problem of segmenting a foreground object out from its complex background is of great interest in image processing and computer vision. Many interactive segmentation algorithms such as graph cut have been successfully developed. In this paper, we present four technical components to improve grap...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhou, Hailing, Zheng, Jianmin, Wei, Lei
Other Authors: School of Computer Engineering
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/99710
http://hdl.handle.net/10220/17541
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The problem of segmenting a foreground object out from its complex background is of great interest in image processing and computer vision. Many interactive segmentation algorithms such as graph cut have been successfully developed. In this paper, we present four technical components to improve graph cut based algorithms, which are combining both color and texture information for graph cut, including structure tensors in the graph cut model, incorporating active contours into the segmentation process, and using a “softbrush” tool to impose soft constraints to refine problematic boundaries. The integration of these components provides an interactive segmentation method that overcomes the difficulties of previous segmentation algorithms in handling images containing textures or low contrast boundaries and producing a smooth and accurate segmentation boundary. Experiments on various images from the Brodatz, Berkeley and MSRC data sets are conducted and the experimental results demonstrate the high effectiveness of the proposed method to a wide range of images.