Coalition-based cooperative packet delivery under uncertainty : a dynamic Bayesian coalitional game

Cooperative packet delivery can improve the data delivery performance in wireless networks by exploiting the mobility of the nodes, especially in networks with intermittent connectivity, high delay and error rates such as wireless mobile delay-tolerant networks (DTNs). For such a network, we study t...

Full description

Saved in:
Bibliographic Details
Main Authors: Akkarajitsakul, Khajonpong, Niyato, Dusit, Hossain, E.
Other Authors: School of Computer Engineering
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/99717
http://hdl.handle.net/10220/17465
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-99717
record_format dspace
spelling sg-ntu-dr.10356-997172020-05-28T07:17:22Z Coalition-based cooperative packet delivery under uncertainty : a dynamic Bayesian coalitional game Akkarajitsakul, Khajonpong Niyato, Dusit Hossain, E. School of Computer Engineering DRNTU::Engineering::Computer science and engineering Cooperative packet delivery can improve the data delivery performance in wireless networks by exploiting the mobility of the nodes, especially in networks with intermittent connectivity, high delay and error rates such as wireless mobile delay-tolerant networks (DTNs). For such a network, we study the problem of rational coalition formation among mobile nodes to cooperatively deliver packets to other mobile nodes in a coalition. Such coalitions are formed by mobile nodes which can be either well behaved or misbehaving in the sense that the well-behaved nodes always help each other for packet delivery, while the misbehaving nodes act selfishly and may not help the other nodes. A Bayesian coalitional game model is developed to analyze the behavior of mobile nodes in coalition formation in presence of this uncertainty of node behavior (i.e., type). Given the beliefs about the other mobile nodes' types, each mobile node makes a decision to form a coalition, and thus the coalitions in the network vary dynamically. A solution concept called Nash-stability is considered to find a stable coalitional structure in this coalitional game with incomplete information. We present a distributed algorithm and a discrete-time Markov chain (DTMC) model to find the Nash-stable coalitional structures. We also consider another solution concept, namely, the Bayesian core, which guarantees that no mobile node has an incentive to leave the grand coalition. The Bayesian game model is extended to a dynamic game model for which we propose a method for each mobile node to update its beliefs about other mobile nodes' types when the coalitional game is played repeatedly. The performance evaluation results show that, for this dynamic Bayesian coalitional game, a Nash-stable coalitional structure is obtained in each subgame. Also, the actual payoff of each mobile node is close to that when all the information is completely known. In addition, the payoffs of the mobile nodes will be at least as h- gh as those when they act alone (i.e., the mobile nodes do not form coalitions). 2013-11-08T05:56:12Z 2019-12-06T20:10:41Z 2013-11-08T05:56:12Z 2019-12-06T20:10:41Z 2013 2013 Journal Article Akkarajitsakul, K., Hossain, E., & Niyato, D. (2013). Coalition-Based Cooperative Packet Delivery under Uncertainty: A Dynamic Bayesian Coalitional Game. IEEE Transactions on Mobile Computing, 12(2), 371-385. 1536-1233 https://hdl.handle.net/10356/99717 http://hdl.handle.net/10220/17465 10.1109/TMC.2011.251 en IEEE transactions on mobile computing
institution Nanyang Technological University
building NTU Library
country Singapore
collection DR-NTU
language English
topic DRNTU::Engineering::Computer science and engineering
spellingShingle DRNTU::Engineering::Computer science and engineering
Akkarajitsakul, Khajonpong
Niyato, Dusit
Hossain, E.
Coalition-based cooperative packet delivery under uncertainty : a dynamic Bayesian coalitional game
description Cooperative packet delivery can improve the data delivery performance in wireless networks by exploiting the mobility of the nodes, especially in networks with intermittent connectivity, high delay and error rates such as wireless mobile delay-tolerant networks (DTNs). For such a network, we study the problem of rational coalition formation among mobile nodes to cooperatively deliver packets to other mobile nodes in a coalition. Such coalitions are formed by mobile nodes which can be either well behaved or misbehaving in the sense that the well-behaved nodes always help each other for packet delivery, while the misbehaving nodes act selfishly and may not help the other nodes. A Bayesian coalitional game model is developed to analyze the behavior of mobile nodes in coalition formation in presence of this uncertainty of node behavior (i.e., type). Given the beliefs about the other mobile nodes' types, each mobile node makes a decision to form a coalition, and thus the coalitions in the network vary dynamically. A solution concept called Nash-stability is considered to find a stable coalitional structure in this coalitional game with incomplete information. We present a distributed algorithm and a discrete-time Markov chain (DTMC) model to find the Nash-stable coalitional structures. We also consider another solution concept, namely, the Bayesian core, which guarantees that no mobile node has an incentive to leave the grand coalition. The Bayesian game model is extended to a dynamic game model for which we propose a method for each mobile node to update its beliefs about other mobile nodes' types when the coalitional game is played repeatedly. The performance evaluation results show that, for this dynamic Bayesian coalitional game, a Nash-stable coalitional structure is obtained in each subgame. Also, the actual payoff of each mobile node is close to that when all the information is completely known. In addition, the payoffs of the mobile nodes will be at least as h- gh as those when they act alone (i.e., the mobile nodes do not form coalitions).
author2 School of Computer Engineering
author_facet School of Computer Engineering
Akkarajitsakul, Khajonpong
Niyato, Dusit
Hossain, E.
format Article
author Akkarajitsakul, Khajonpong
Niyato, Dusit
Hossain, E.
author_sort Akkarajitsakul, Khajonpong
title Coalition-based cooperative packet delivery under uncertainty : a dynamic Bayesian coalitional game
title_short Coalition-based cooperative packet delivery under uncertainty : a dynamic Bayesian coalitional game
title_full Coalition-based cooperative packet delivery under uncertainty : a dynamic Bayesian coalitional game
title_fullStr Coalition-based cooperative packet delivery under uncertainty : a dynamic Bayesian coalitional game
title_full_unstemmed Coalition-based cooperative packet delivery under uncertainty : a dynamic Bayesian coalitional game
title_sort coalition-based cooperative packet delivery under uncertainty : a dynamic bayesian coalitional game
publishDate 2013
url https://hdl.handle.net/10356/99717
http://hdl.handle.net/10220/17465
_version_ 1681059059856310272