A single-camera technique for simultaneous measurement of large solid particles transported in rapid shallow channel flows

This paper describes a measurement technique that was successfully applied in a study of bed load transport of large spherical solid particles in a shallow and supercritical flow (Fr = 2.59–3.17) down a steep slope. The experimental condition was characterized by the relatively large solid particle...

Full description

Saved in:
Bibliographic Details
Main Authors: Tuyen, Nguyen Ba., Cheng, Nian-Sheng
Other Authors: School of Civil and Environmental Engineering
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/99899
http://hdl.handle.net/10220/13749
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-99899
record_format dspace
spelling sg-ntu-dr.10356-998992020-03-07T11:43:46Z A single-camera technique for simultaneous measurement of large solid particles transported in rapid shallow channel flows Tuyen, Nguyen Ba. Cheng, Nian-Sheng School of Civil and Environmental Engineering DRNTU::Engineering::Civil engineering DRNTU::Engineering::Environmental engineering This paper describes a measurement technique that was successfully applied in a study of bed load transport of large spherical solid particles in a shallow and supercritical flow (Fr = 2.59–3.17) down a steep slope. The experimental condition was characterized by the relatively large solid particle size compared to the flow depth (d p /h = 0.23–0.35), and compared to the tracer diameter (d p /d t ≈ 130). The technique incorporated particle image velocimetry and particle tracking velocimetry (PTV) to simultaneously measure the characteristics of the two phases. In order to detect true solid particles and to distinguish them from each other and the unwanted objects, a particle characterization (PCR) algorithm based on Hough transform was employed. The output from the PCR process was utilized for PTV, as well as to generate the corresponding tracer images for special needs. Validation tests have confirmed the pixel accuracy and high reliability of the combined technique. Experimental results obtained with the developed technique include flow velocities, particle velocities, and concentration. The analysis has shown that the particle concentration profile followed an exponential relationship of the form similar to that of Rouse’s profiles, despite the large d p /h ratio. It also revealed the effect of phase interaction, as a low loading rate of light particles on the order of O(10−3) could yield a noticeable slowdown in the streamwise fluid velocity. 2013-09-30T08:37:34Z 2019-12-06T20:13:13Z 2013-09-30T08:37:34Z 2019-12-06T20:13:13Z 2012 2012 Journal Article Tuyen, N. B., & Cheng, N. S. (2012). A single-camera technique for simultaneous measurement of large solid particles transported in rapid shallow channel flows. Experiments in fluids, 53(5), 1269-1287. https://hdl.handle.net/10356/99899 http://hdl.handle.net/10220/13749 10.1007/s00348-012-1358-5 en Experiments in fluids
institution Nanyang Technological University
building NTU Library
country Singapore
collection DR-NTU
language English
topic DRNTU::Engineering::Civil engineering
DRNTU::Engineering::Environmental engineering
spellingShingle DRNTU::Engineering::Civil engineering
DRNTU::Engineering::Environmental engineering
Tuyen, Nguyen Ba.
Cheng, Nian-Sheng
A single-camera technique for simultaneous measurement of large solid particles transported in rapid shallow channel flows
description This paper describes a measurement technique that was successfully applied in a study of bed load transport of large spherical solid particles in a shallow and supercritical flow (Fr = 2.59–3.17) down a steep slope. The experimental condition was characterized by the relatively large solid particle size compared to the flow depth (d p /h = 0.23–0.35), and compared to the tracer diameter (d p /d t ≈ 130). The technique incorporated particle image velocimetry and particle tracking velocimetry (PTV) to simultaneously measure the characteristics of the two phases. In order to detect true solid particles and to distinguish them from each other and the unwanted objects, a particle characterization (PCR) algorithm based on Hough transform was employed. The output from the PCR process was utilized for PTV, as well as to generate the corresponding tracer images for special needs. Validation tests have confirmed the pixel accuracy and high reliability of the combined technique. Experimental results obtained with the developed technique include flow velocities, particle velocities, and concentration. The analysis has shown that the particle concentration profile followed an exponential relationship of the form similar to that of Rouse’s profiles, despite the large d p /h ratio. It also revealed the effect of phase interaction, as a low loading rate of light particles on the order of O(10−3) could yield a noticeable slowdown in the streamwise fluid velocity.
author2 School of Civil and Environmental Engineering
author_facet School of Civil and Environmental Engineering
Tuyen, Nguyen Ba.
Cheng, Nian-Sheng
format Article
author Tuyen, Nguyen Ba.
Cheng, Nian-Sheng
author_sort Tuyen, Nguyen Ba.
title A single-camera technique for simultaneous measurement of large solid particles transported in rapid shallow channel flows
title_short A single-camera technique for simultaneous measurement of large solid particles transported in rapid shallow channel flows
title_full A single-camera technique for simultaneous measurement of large solid particles transported in rapid shallow channel flows
title_fullStr A single-camera technique for simultaneous measurement of large solid particles transported in rapid shallow channel flows
title_full_unstemmed A single-camera technique for simultaneous measurement of large solid particles transported in rapid shallow channel flows
title_sort single-camera technique for simultaneous measurement of large solid particles transported in rapid shallow channel flows
publishDate 2013
url https://hdl.handle.net/10356/99899
http://hdl.handle.net/10220/13749
_version_ 1681045896463122432