Two-dimensional CuSe nanosheets with microscale lateral size : synthesis and template-assisted phase transformation
Semiconducting nanosheets with microscale lateral size are attractive building blocks for the fabrication of electronic and optoelectronic devices. The phase-controlled chemical synthesis of semiconducting nanosheets is of particular interest, because their intriguing properties are not only related...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/99956 http://hdl.handle.net/10220/19661 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Semiconducting nanosheets with microscale lateral size are attractive building blocks for the fabrication of electronic and optoelectronic devices. The phase-controlled chemical synthesis of semiconducting nanosheets is of particular interest, because their intriguing properties are not only related to their size and shape, but also phase-dependent. Herein, a facile method for the synthesis of phase-pure, microsized, two-dimensional (2D) CuSe nanosheets with an average thickness of approximately 5 nm is demonstrated. These hexagonal-phased CuSe nanosheets were transformed into cubic-phased Cu2−xSe nanosheets with the same morphology simply by treatment with heat in the presence of CuI cations. The phase transformation, proposed to be a template-assisted process, can be extended to other systems, such as CuS and Cu1.97S nanoplates. Our study offers a new method for the phase-controlled preparation of 2D nanomaterials, which are not readily accessible by conventional wet-chemical methods. |
---|