Molecular dynamics analysis of the thermal conductivity of graphene and silicene monolayers of different lengths
Nano- to micron-sized monolayered materials of both carbon (graphene) and silicon (silicene) were modeled with molecular dynamics. Graphene was modeled using an optimized parameterization of the Tersoff potential, while silicene was modeled using parameterizations of the Tersoff potential for silico...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/99959 http://hdl.handle.net/10220/19665 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-99959 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-999592020-03-07T13:22:19Z Molecular dynamics analysis of the thermal conductivity of graphene and silicene monolayers of different lengths Yeo, Jing Jie Liu, Z. S. School of Mechanical and Aerospace Engineering DRNTU::Engineering::Materials::Non-metallic materials Nano- to micron-sized monolayered materials of both carbon (graphene) and silicon (silicene) were modeled with molecular dynamics. Graphene was modeled using an optimized parameterization of the Tersoff potential, while silicene was modeled using parameterizations of the Tersoff potential for silicon. Thermal conductivities were determined from direct non-equilibrium molecular dynamics. The present results indicate that as the lengths of both materials increased, the corresponding thermal conductivities increased as well, such that graphene had far higher thermal conductivity than silicene across all length scales. Armchair and zigzag chiralities in both graphene and silicene had no significant differences in thermal conductivities, given the fact that these monolayered materials were modeled with infinite widths. Graphene was found to possess significantly higher thermal conductivities than silicene at every length scale and chirality, and this can be attributed to the higher phonon group velocities of the dominant acoustic modes in graphene, shown through studies on the vibrational density of states and the phonon dispersion curves. 2014-06-11T05:23:25Z 2019-12-06T20:14:02Z 2014-06-11T05:23:25Z 2019-12-06T20:14:02Z 2014 2014 Journal Article Yeo, J. J., & Liu, Z. S. (2014). Molecular Dynamics Analysis of the Thermal Conductivity of Graphene and Silicene Monolayers of Different Lengths. Journal of Computational and Theoretical Nanoscience, 11(8), 1790-1796. https://hdl.handle.net/10356/99959 http://hdl.handle.net/10220/19665 10.1166/jctn.2014.3568 en Journal of computational and theoretical nanoscience © 2014 American Scientific Publishers. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Materials::Non-metallic materials |
spellingShingle |
DRNTU::Engineering::Materials::Non-metallic materials Yeo, Jing Jie Liu, Z. S. Molecular dynamics analysis of the thermal conductivity of graphene and silicene monolayers of different lengths |
description |
Nano- to micron-sized monolayered materials of both carbon (graphene) and silicon (silicene) were modeled with molecular dynamics. Graphene was modeled using an optimized parameterization of the Tersoff potential, while silicene was modeled using parameterizations of the Tersoff potential for silicon. Thermal conductivities were determined from direct non-equilibrium molecular dynamics. The present results indicate that as the lengths of both materials increased, the corresponding thermal conductivities increased as well, such that graphene had far higher thermal conductivity than silicene across all length scales. Armchair and zigzag chiralities in both graphene and silicene had no significant differences in thermal conductivities, given the fact that these monolayered materials were modeled with infinite widths. Graphene was found to possess significantly higher thermal conductivities than silicene at every length scale and chirality, and this can be attributed to the higher phonon group velocities of the dominant acoustic modes in graphene, shown through studies on the vibrational density of states and the phonon dispersion curves. |
author2 |
School of Mechanical and Aerospace Engineering |
author_facet |
School of Mechanical and Aerospace Engineering Yeo, Jing Jie Liu, Z. S. |
format |
Article |
author |
Yeo, Jing Jie Liu, Z. S. |
author_sort |
Yeo, Jing Jie |
title |
Molecular dynamics analysis of the thermal conductivity of graphene and silicene monolayers of different lengths |
title_short |
Molecular dynamics analysis of the thermal conductivity of graphene and silicene monolayers of different lengths |
title_full |
Molecular dynamics analysis of the thermal conductivity of graphene and silicene monolayers of different lengths |
title_fullStr |
Molecular dynamics analysis of the thermal conductivity of graphene and silicene monolayers of different lengths |
title_full_unstemmed |
Molecular dynamics analysis of the thermal conductivity of graphene and silicene monolayers of different lengths |
title_sort |
molecular dynamics analysis of the thermal conductivity of graphene and silicene monolayers of different lengths |
publishDate |
2014 |
url |
https://hdl.handle.net/10356/99959 http://hdl.handle.net/10220/19665 |
_version_ |
1681047790094909440 |