On the Poincaré-Friedrichs inequality for piecewise H1 functions in anisotropic discontinuous Galerkin finite element methods

Mathematics of Computation

Saved in:
Bibliographic Details
Main Authors: Duan, H.-Y., Tan, R.C.E.
Other Authors: MATHEMATICS
Format: Article
Published: 2014
Subjects:
Online Access:http://scholarbank.nus.edu.sg/handle/10635/103826
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-103826
record_format dspace
spelling sg-nus-scholar.10635-1038262015-04-04T07:40:23Z On the Poincaré-Friedrichs inequality for piecewise H1 functions in anisotropic discontinuous Galerkin finite element methods Duan, H.-Y. Tan, R.C.E. MATHEMATICS Anisotropic mesh Crouzeix-Raviart nonconforming linear element Discontinuous galerkin finite element method Poincaré-Friedrichs inequality of piecewise H1 function Shape-regular condition The maximum angle condition Mathematics of Computation 80 273 119-140 2014-10-28T02:41:55Z 2014-10-28T02:41:55Z 2010 Article Duan, H.-Y.,Tan, R.C.E. (2010). On the Poincaré-Friedrichs inequality for piecewise H1 functions in anisotropic discontinuous Galerkin finite element methods. Mathematics of Computation 80 (273) : 119-140. ScholarBank@NUS Repository. 00255718 http://scholarbank.nus.edu.sg/handle/10635/103826 NOT_IN_WOS Scopus
institution National University of Singapore
building NUS Library
country Singapore
collection ScholarBank@NUS
topic Anisotropic mesh
Crouzeix-Raviart nonconforming linear element
Discontinuous galerkin finite element method
Poincaré-Friedrichs inequality of piecewise H1 function
Shape-regular condition
The maximum angle condition
spellingShingle Anisotropic mesh
Crouzeix-Raviart nonconforming linear element
Discontinuous galerkin finite element method
Poincaré-Friedrichs inequality of piecewise H1 function
Shape-regular condition
The maximum angle condition
Duan, H.-Y.
Tan, R.C.E.
On the Poincaré-Friedrichs inequality for piecewise H1 functions in anisotropic discontinuous Galerkin finite element methods
description Mathematics of Computation
author2 MATHEMATICS
author_facet MATHEMATICS
Duan, H.-Y.
Tan, R.C.E.
format Article
author Duan, H.-Y.
Tan, R.C.E.
author_sort Duan, H.-Y.
title On the Poincaré-Friedrichs inequality for piecewise H1 functions in anisotropic discontinuous Galerkin finite element methods
title_short On the Poincaré-Friedrichs inequality for piecewise H1 functions in anisotropic discontinuous Galerkin finite element methods
title_full On the Poincaré-Friedrichs inequality for piecewise H1 functions in anisotropic discontinuous Galerkin finite element methods
title_fullStr On the Poincaré-Friedrichs inequality for piecewise H1 functions in anisotropic discontinuous Galerkin finite element methods
title_full_unstemmed On the Poincaré-Friedrichs inequality for piecewise H1 functions in anisotropic discontinuous Galerkin finite element methods
title_sort on the poincaré-friedrichs inequality for piecewise h1 functions in anisotropic discontinuous galerkin finite element methods
publishDate 2014
url http://scholarbank.nus.edu.sg/handle/10635/103826
_version_ 1681092993864433664