In silico prediction of spleen tyrosine kinase inhibitors using machine learning approaches and an optimized molecular descriptor subset generated by recursive feature elimination method

10.1016/j.compbiomed.2013.01.015

Saved in:
Bibliographic Details
Main Authors: Li, B.-K., Cong, Y., Yang, X.-G., Xue, Y., Chen, Y.-Z.
Other Authors: PHARMACY
Format: Article
Published: 2014
Subjects:
Online Access:http://scholarbank.nus.edu.sg/handle/10635/106035
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-106035
record_format dspace
spelling sg-nus-scholar.10635-1060352023-10-29T22:05:41Z In silico prediction of spleen tyrosine kinase inhibitors using machine learning approaches and an optimized molecular descriptor subset generated by recursive feature elimination method Li, B.-K. Cong, Y. Yang, X.-G. Xue, Y. Chen, Y.-Z. PHARMACY Machine learning methods (ML methods) Recursive feature elimination (RFE) Rheumatoid arthritis (RA) Spleen tyrosine kinase (Syk) Support vector machine (SVM) 10.1016/j.compbiomed.2013.01.015 Computers in Biology and Medicine 43 4 395-404 CBMDA 2014-10-29T01:54:04Z 2014-10-29T01:54:04Z 2013-05-01 Article Li, B.-K., Cong, Y., Yang, X.-G., Xue, Y., Chen, Y.-Z. (2013-05-01). In silico prediction of spleen tyrosine kinase inhibitors using machine learning approaches and an optimized molecular descriptor subset generated by recursive feature elimination method. Computers in Biology and Medicine 43 (4) : 395-404. ScholarBank@NUS Repository. https://doi.org/10.1016/j.compbiomed.2013.01.015 00104825 http://scholarbank.nus.edu.sg/handle/10635/106035 000316532100018 Scopus
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic Machine learning methods (ML methods)
Recursive feature elimination (RFE)
Rheumatoid arthritis (RA)
Spleen tyrosine kinase (Syk)
Support vector machine (SVM)
spellingShingle Machine learning methods (ML methods)
Recursive feature elimination (RFE)
Rheumatoid arthritis (RA)
Spleen tyrosine kinase (Syk)
Support vector machine (SVM)
Li, B.-K.
Cong, Y.
Yang, X.-G.
Xue, Y.
Chen, Y.-Z.
In silico prediction of spleen tyrosine kinase inhibitors using machine learning approaches and an optimized molecular descriptor subset generated by recursive feature elimination method
description 10.1016/j.compbiomed.2013.01.015
author2 PHARMACY
author_facet PHARMACY
Li, B.-K.
Cong, Y.
Yang, X.-G.
Xue, Y.
Chen, Y.-Z.
format Article
author Li, B.-K.
Cong, Y.
Yang, X.-G.
Xue, Y.
Chen, Y.-Z.
author_sort Li, B.-K.
title In silico prediction of spleen tyrosine kinase inhibitors using machine learning approaches and an optimized molecular descriptor subset generated by recursive feature elimination method
title_short In silico prediction of spleen tyrosine kinase inhibitors using machine learning approaches and an optimized molecular descriptor subset generated by recursive feature elimination method
title_full In silico prediction of spleen tyrosine kinase inhibitors using machine learning approaches and an optimized molecular descriptor subset generated by recursive feature elimination method
title_fullStr In silico prediction of spleen tyrosine kinase inhibitors using machine learning approaches and an optimized molecular descriptor subset generated by recursive feature elimination method
title_full_unstemmed In silico prediction of spleen tyrosine kinase inhibitors using machine learning approaches and an optimized molecular descriptor subset generated by recursive feature elimination method
title_sort in silico prediction of spleen tyrosine kinase inhibitors using machine learning approaches and an optimized molecular descriptor subset generated by recursive feature elimination method
publishDate 2014
url http://scholarbank.nus.edu.sg/handle/10635/106035
_version_ 1781788160976486400