Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation

10.1109/TMI.2017.2743464

Saved in:
Bibliographic Details
Main Authors: Oktay O., Ferrante E., Kamnitsas K., Heinrich M., Bai W., Caballero J., Cook S.A., De Marvao A., Dawes T., O'Regan D.P., Kainz B., Glocker B., Rueckert D.
Other Authors: DUKE-NUS MEDICAL SCHOOL
Format: Article
Published: Institute of Electrical and Electronics Engineers Inc. 2019
Subjects:
Online Access:http://scholarbank.nus.edu.sg/handle/10635/150626
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-150626
record_format dspace
spelling sg-nus-scholar.10635-1506262023-10-31T22:03:46Z Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation Oktay O. Ferrante E. Kamnitsas K. Heinrich M. Bai W. Caballero J. Cook S.A. De Marvao A. Dawes T. O'Regan D.P. Kainz B. Glocker B. Rueckert D. DUKE-NUS MEDICAL SCHOOL convolutional neural network image super-resolution medical image segmentation Shape prior 10.1109/TMI.2017.2743464 IEEE Transactions on Medical Imaging 37 2 384-395 ITMID 2019-01-08T09:00:31Z 2019-01-08T09:00:31Z 2018 Article Oktay O., Ferrante E., Kamnitsas K., Heinrich M., Bai W., Caballero J., Cook S.A., De Marvao A., Dawes T., O'Regan D.P., Kainz B., Glocker B., Rueckert D. (2018). Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation. IEEE Transactions on Medical Imaging 37 (2) : 384-395. ScholarBank@NUS Repository. https://doi.org/10.1109/TMI.2017.2743464 02780062 http://scholarbank.nus.edu.sg/handle/10635/150626 Institute of Electrical and Electronics Engineers Inc. Scopus
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic convolutional neural network
image super-resolution
medical image segmentation
Shape prior
spellingShingle convolutional neural network
image super-resolution
medical image segmentation
Shape prior
Oktay O.
Ferrante E.
Kamnitsas K.
Heinrich M.
Bai W.
Caballero J.
Cook S.A.
De Marvao A.
Dawes T.
O'Regan D.P.
Kainz B.
Glocker B.
Rueckert D.
Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation
description 10.1109/TMI.2017.2743464
author2 DUKE-NUS MEDICAL SCHOOL
author_facet DUKE-NUS MEDICAL SCHOOL
Oktay O.
Ferrante E.
Kamnitsas K.
Heinrich M.
Bai W.
Caballero J.
Cook S.A.
De Marvao A.
Dawes T.
O'Regan D.P.
Kainz B.
Glocker B.
Rueckert D.
format Article
author Oktay O.
Ferrante E.
Kamnitsas K.
Heinrich M.
Bai W.
Caballero J.
Cook S.A.
De Marvao A.
Dawes T.
O'Regan D.P.
Kainz B.
Glocker B.
Rueckert D.
author_sort Oktay O.
title Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation
title_short Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation
title_full Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation
title_fullStr Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation
title_full_unstemmed Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation
title_sort anatomically constrained neural networks (acnns): application to cardiac image enhancement and segmentation
publisher Institute of Electrical and Electronics Engineers Inc.
publishDate 2019
url http://scholarbank.nus.edu.sg/handle/10635/150626
_version_ 1781791596565495808