Inferring Gene-Phenotype associations via global protein complex network propagation

10.1371/journal.pone.0021502

Saved in:
Bibliographic Details
Main Authors: Yang P., Li X., Wu M., Kwoh C.-K., Ng S.-K.
Other Authors: DEPARTMENT OF COMPUTER SCIENCE
Format: Article
Published: 2019
Subjects:
Online Access:https://scholarbank.nus.edu.sg/handle/10635/162039
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-162039
record_format dspace
spelling sg-nus-scholar.10635-1620392024-11-15T00:11:52Z Inferring Gene-Phenotype associations via global protein complex network propagation Yang P. Li X. Wu M. Kwoh C.-K. Ng S.-K. DEPARTMENT OF COMPUTER SCIENCE multiprotein complex algorithm article bioinformatics breast cancer complex formation controlled study diabetes mellitus disease association genetic analysis genetic variability genotype phenotype correlation prediction protein analysis protein expression protein protein interaction random walker on protein complex network statistical analysis validation process biology diseases genetics human human genome methodology phenotype protein protein interaction Algorithms Computational Biology Disease Genome, Human Humans Phenotype Protein Interaction Maps 10.1371/journal.pone.0021502 PLoS ONE 6 7 e21502 2019-11-11T08:38:58Z 2019-11-11T08:38:58Z 2011 Article Yang P., Li X., Wu M., Kwoh C.-K., Ng S.-K. (2011). Inferring Gene-Phenotype associations via global protein complex network propagation. PLoS ONE 6 (7) : e21502. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pone.0021502 19326203 https://scholarbank.nus.edu.sg/handle/10635/162039 Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Unpaywall 20191101
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic multiprotein complex
algorithm
article
bioinformatics
breast cancer
complex formation
controlled study
diabetes mellitus
disease association
genetic analysis
genetic variability
genotype phenotype correlation
prediction
protein analysis
protein expression
protein protein interaction
random walker on protein complex network
statistical analysis
validation process
biology
diseases
genetics
human
human genome
methodology
phenotype
protein protein interaction
Algorithms
Computational Biology
Disease
Genome, Human
Humans
Phenotype
Protein Interaction Maps
spellingShingle multiprotein complex
algorithm
article
bioinformatics
breast cancer
complex formation
controlled study
diabetes mellitus
disease association
genetic analysis
genetic variability
genotype phenotype correlation
prediction
protein analysis
protein expression
protein protein interaction
random walker on protein complex network
statistical analysis
validation process
biology
diseases
genetics
human
human genome
methodology
phenotype
protein protein interaction
Algorithms
Computational Biology
Disease
Genome, Human
Humans
Phenotype
Protein Interaction Maps
Yang P.
Li X.
Wu M.
Kwoh C.-K.
Ng S.-K.
Inferring Gene-Phenotype associations via global protein complex network propagation
description 10.1371/journal.pone.0021502
author2 DEPARTMENT OF COMPUTER SCIENCE
author_facet DEPARTMENT OF COMPUTER SCIENCE
Yang P.
Li X.
Wu M.
Kwoh C.-K.
Ng S.-K.
format Article
author Yang P.
Li X.
Wu M.
Kwoh C.-K.
Ng S.-K.
author_sort Yang P.
title Inferring Gene-Phenotype associations via global protein complex network propagation
title_short Inferring Gene-Phenotype associations via global protein complex network propagation
title_full Inferring Gene-Phenotype associations via global protein complex network propagation
title_fullStr Inferring Gene-Phenotype associations via global protein complex network propagation
title_full_unstemmed Inferring Gene-Phenotype associations via global protein complex network propagation
title_sort inferring gene-phenotype associations via global protein complex network propagation
publishDate 2019
url https://scholarbank.nus.edu.sg/handle/10635/162039
_version_ 1821209510767755264