A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations

10.1016/s2589-7500(20)30063-7

Saved in:
Bibliographic Details
Main Authors: Sabanayagam, Charumathi, Xu, Dejiang, Ting, Daniel SW, Nusinovici, Simon, Banu, Riswana, Hamzah, Haslina, Lim, Cynthia, Tham, Yih-Chung, Cheung, Carol Y, Tai, E Shyong, Wang, Ya Xing, Jonas, Jost B, Cheng, Ching-Yu, Lee, Mong Li, Hsu, Wynne, Wong, Tien Y
Other Authors: DEAN'S OFFICE (DUKE-NUS MEDICAL SCHOOL)
Format: Article
Published: Elsevier BV 2020
Online Access:https://scholarbank.nus.edu.sg/handle/10635/169193
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-169193
record_format dspace
spelling sg-nus-scholar.10635-1691932024-04-25T07:34:22Z A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations Sabanayagam, Charumathi Xu, Dejiang Ting, Daniel SW Nusinovici, Simon Banu, Riswana Hamzah, Haslina Lim, Cynthia Tham, Yih-Chung Cheung, Carol Y Tai, E Shyong Wang, Ya Xing Jonas, Jost B Cheng, Ching-Yu Lee, Mong Li Hsu, Wynne Wong, Tien Y DEAN'S OFFICE (DUKE-NUS MEDICAL SCHOOL) DEPARTMENT OF COMPUTER SCIENCE MEDICINE DUKE-NUS MEDICAL SCHOOL 10.1016/s2589-7500(20)30063-7 The Lancet Digital Health 2 6 e295-e302 2020-06-04T02:43:55Z 2020-06-04T02:43:55Z 2020-06 2020-06-03T10:06:34Z Article Sabanayagam, Charumathi, Xu, Dejiang, Ting, Daniel SW, Nusinovici, Simon, Banu, Riswana, Hamzah, Haslina, Lim, Cynthia, Tham, Yih-Chung, Cheung, Carol Y, Tai, E Shyong, Wang, Ya Xing, Jonas, Jost B, Cheng, Ching-Yu, Lee, Mong Li, Hsu, Wynne, Wong, Tien Y (2020-06). A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations. The Lancet Digital Health 2 (6) : e295-e302. ScholarBank@NUS Repository. https://doi.org/10.1016/s2589-7500(20)30063-7 2589-7500 https://scholarbank.nus.edu.sg/handle/10635/169193 Elsevier BV Elements
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
description 10.1016/s2589-7500(20)30063-7
author2 DEAN'S OFFICE (DUKE-NUS MEDICAL SCHOOL)
author_facet DEAN'S OFFICE (DUKE-NUS MEDICAL SCHOOL)
Sabanayagam, Charumathi
Xu, Dejiang
Ting, Daniel SW
Nusinovici, Simon
Banu, Riswana
Hamzah, Haslina
Lim, Cynthia
Tham, Yih-Chung
Cheung, Carol Y
Tai, E Shyong
Wang, Ya Xing
Jonas, Jost B
Cheng, Ching-Yu
Lee, Mong Li
Hsu, Wynne
Wong, Tien Y
format Article
author Sabanayagam, Charumathi
Xu, Dejiang
Ting, Daniel SW
Nusinovici, Simon
Banu, Riswana
Hamzah, Haslina
Lim, Cynthia
Tham, Yih-Chung
Cheung, Carol Y
Tai, E Shyong
Wang, Ya Xing
Jonas, Jost B
Cheng, Ching-Yu
Lee, Mong Li
Hsu, Wynne
Wong, Tien Y
spellingShingle Sabanayagam, Charumathi
Xu, Dejiang
Ting, Daniel SW
Nusinovici, Simon
Banu, Riswana
Hamzah, Haslina
Lim, Cynthia
Tham, Yih-Chung
Cheung, Carol Y
Tai, E Shyong
Wang, Ya Xing
Jonas, Jost B
Cheng, Ching-Yu
Lee, Mong Li
Hsu, Wynne
Wong, Tien Y
A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations
author_sort Sabanayagam, Charumathi
title A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations
title_short A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations
title_full A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations
title_fullStr A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations
title_full_unstemmed A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations
title_sort deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations
publisher Elsevier BV
publishDate 2020
url https://scholarbank.nus.edu.sg/handle/10635/169193
_version_ 1800914036740587520