Bypassing Backdoor Detection Algorithms in Deep Learning

IEEE European Symposium on Security and Privacy (EuroSP)

Saved in:
Bibliographic Details
Main Authors: Tan, Te Juin Lester, Shokri Reza
Other Authors: DEPT OF COMPUTER SCIENCE
Format: Conference or Workshop Item
Published: 2020
Online Access:https://scholarbank.nus.edu.sg/handle/10635/176382
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-176382
record_format dspace
spelling sg-nus-scholar.10635-1763822020-09-21T13:20:15Z Bypassing Backdoor Detection Algorithms in Deep Learning Tan, Te Juin Lester Shokri Reza DEPT OF COMPUTER SCIENCE IEEE European Symposium on Security and Privacy (EuroSP) 2020-09-21T01:28:40Z 2020-09-21T01:28:40Z 2020-09-07 2020-09-19T11:31:09Z Conference Paper Tan, Te Juin Lester, Shokri Reza (2020-09-07). Bypassing Backdoor Detection Algorithms in Deep Learning. IEEE European Symposium on Security and Privacy (EuroSP). ScholarBank@NUS Repository. https://scholarbank.nus.edu.sg/handle/10635/176382 Elements
institution National University of Singapore
building NUS Library
country Singapore
collection ScholarBank@NUS
description IEEE European Symposium on Security and Privacy (EuroSP)
author2 DEPT OF COMPUTER SCIENCE
author_facet DEPT OF COMPUTER SCIENCE
Tan, Te Juin Lester
Shokri Reza
format Conference or Workshop Item
author Tan, Te Juin Lester
Shokri Reza
spellingShingle Tan, Te Juin Lester
Shokri Reza
Bypassing Backdoor Detection Algorithms in Deep Learning
author_sort Tan, Te Juin Lester
title Bypassing Backdoor Detection Algorithms in Deep Learning
title_short Bypassing Backdoor Detection Algorithms in Deep Learning
title_full Bypassing Backdoor Detection Algorithms in Deep Learning
title_fullStr Bypassing Backdoor Detection Algorithms in Deep Learning
title_full_unstemmed Bypassing Backdoor Detection Algorithms in Deep Learning
title_sort bypassing backdoor detection algorithms in deep learning
publishDate 2020
url https://scholarbank.nus.edu.sg/handle/10635/176382
_version_ 1681102088981970944