Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method
10.1038/s41598-017-01699-z
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Nature Publishing Group
2020
|
Subjects: | |
Online Access: | https://scholarbank.nus.edu.sg/handle/10635/178615 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | National University of Singapore |
id |
sg-nus-scholar.10635-178615 |
---|---|
record_format |
dspace |
spelling |
sg-nus-scholar.10635-1786152024-11-12T12:16:20Z Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method Yao, Y Li, X Liao, B Huang, L He, P Wang, F Yang, J Sun, H Zhao, Y Yang, J CENTRE FOR MARITIME STUDIES Influenza virus hemagglutinin virus antigen algorithm amino acid sequence amino acid substitution chemistry genetics human immunology Influenza A virus (H3N2) molecular evolution mutation Algorithms Amino Acid Sequence Amino Acid Substitution Antigens, Viral Evolution, Molecular Hemagglutinin Glycoproteins, Influenza Virus Humans Influenza A Virus, H3N2 Subtype Mutation 10.1038/s41598-017-01699-z Scientific Reports 7 1 1545 2020-10-20T10:33:15Z 2020-10-20T10:33:15Z 2017 Article Yao, Y, Li, X, Liao, B, Huang, L, He, P, Wang, F, Yang, J, Sun, H, Zhao, Y, Yang, J (2017). Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method. Scientific Reports 7 (1) : 1545. ScholarBank@NUS Repository. https://doi.org/10.1038/s41598-017-01699-z 2045-2322 https://scholarbank.nus.edu.sg/handle/10635/178615 Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Nature Publishing Group Unpaywall 20201031 |
institution |
National University of Singapore |
building |
NUS Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NUS Library |
collection |
ScholarBank@NUS |
topic |
Influenza virus hemagglutinin virus antigen algorithm amino acid sequence amino acid substitution chemistry genetics human immunology Influenza A virus (H3N2) molecular evolution mutation Algorithms Amino Acid Sequence Amino Acid Substitution Antigens, Viral Evolution, Molecular Hemagglutinin Glycoproteins, Influenza Virus Humans Influenza A Virus, H3N2 Subtype Mutation |
spellingShingle |
Influenza virus hemagglutinin virus antigen algorithm amino acid sequence amino acid substitution chemistry genetics human immunology Influenza A virus (H3N2) molecular evolution mutation Algorithms Amino Acid Sequence Amino Acid Substitution Antigens, Viral Evolution, Molecular Hemagglutinin Glycoproteins, Influenza Virus Humans Influenza A Virus, H3N2 Subtype Mutation Yao, Y Li, X Liao, B Huang, L He, P Wang, F Yang, J Sun, H Zhao, Y Yang, J Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method |
description |
10.1038/s41598-017-01699-z |
author2 |
CENTRE FOR MARITIME STUDIES |
author_facet |
CENTRE FOR MARITIME STUDIES Yao, Y Li, X Liao, B Huang, L He, P Wang, F Yang, J Sun, H Zhao, Y Yang, J |
format |
Article |
author |
Yao, Y Li, X Liao, B Huang, L He, P Wang, F Yang, J Sun, H Zhao, Y Yang, J |
author_sort |
Yao, Y |
title |
Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method |
title_short |
Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method |
title_full |
Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method |
title_fullStr |
Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method |
title_full_unstemmed |
Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method |
title_sort |
predicting influenza antigenicity from hemagglutintin sequence data based on a joint random forest method |
publisher |
Nature Publishing Group |
publishDate |
2020 |
url |
https://scholarbank.nus.edu.sg/handle/10635/178615 |
_version_ |
1821222330440876032 |