Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method

10.1038/s41598-017-01699-z

Saved in:
Bibliographic Details
Main Authors: Yao, Y, Li, X, Liao, B, Huang, L, He, P, Wang, F, Yang, J, Sun, H, Zhao, Y
Other Authors: CENTRE FOR MARITIME STUDIES
Format: Article
Published: Nature Publishing Group 2020
Subjects:
Online Access:https://scholarbank.nus.edu.sg/handle/10635/178615
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-178615
record_format dspace
spelling sg-nus-scholar.10635-1786152024-11-12T12:16:20Z Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method Yao, Y Li, X Liao, B Huang, L He, P Wang, F Yang, J Sun, H Zhao, Y Yang, J CENTRE FOR MARITIME STUDIES Influenza virus hemagglutinin virus antigen algorithm amino acid sequence amino acid substitution chemistry genetics human immunology Influenza A virus (H3N2) molecular evolution mutation Algorithms Amino Acid Sequence Amino Acid Substitution Antigens, Viral Evolution, Molecular Hemagglutinin Glycoproteins, Influenza Virus Humans Influenza A Virus, H3N2 Subtype Mutation 10.1038/s41598-017-01699-z Scientific Reports 7 1 1545 2020-10-20T10:33:15Z 2020-10-20T10:33:15Z 2017 Article Yao, Y, Li, X, Liao, B, Huang, L, He, P, Wang, F, Yang, J, Sun, H, Zhao, Y, Yang, J (2017). Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method. Scientific Reports 7 (1) : 1545. ScholarBank@NUS Repository. https://doi.org/10.1038/s41598-017-01699-z 2045-2322 https://scholarbank.nus.edu.sg/handle/10635/178615 Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Nature Publishing Group Unpaywall 20201031
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic Influenza virus hemagglutinin
virus antigen
algorithm
amino acid sequence
amino acid substitution
chemistry
genetics
human
immunology
Influenza A virus (H3N2)
molecular evolution
mutation
Algorithms
Amino Acid Sequence
Amino Acid Substitution
Antigens, Viral
Evolution, Molecular
Hemagglutinin Glycoproteins, Influenza Virus
Humans
Influenza A Virus, H3N2 Subtype
Mutation
spellingShingle Influenza virus hemagglutinin
virus antigen
algorithm
amino acid sequence
amino acid substitution
chemistry
genetics
human
immunology
Influenza A virus (H3N2)
molecular evolution
mutation
Algorithms
Amino Acid Sequence
Amino Acid Substitution
Antigens, Viral
Evolution, Molecular
Hemagglutinin Glycoproteins, Influenza Virus
Humans
Influenza A Virus, H3N2 Subtype
Mutation
Yao, Y
Li, X
Liao, B
Huang, L
He, P
Wang, F
Yang, J
Sun, H
Zhao, Y
Yang, J
Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method
description 10.1038/s41598-017-01699-z
author2 CENTRE FOR MARITIME STUDIES
author_facet CENTRE FOR MARITIME STUDIES
Yao, Y
Li, X
Liao, B
Huang, L
He, P
Wang, F
Yang, J
Sun, H
Zhao, Y
Yang, J
format Article
author Yao, Y
Li, X
Liao, B
Huang, L
He, P
Wang, F
Yang, J
Sun, H
Zhao, Y
Yang, J
author_sort Yao, Y
title Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method
title_short Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method
title_full Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method
title_fullStr Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method
title_full_unstemmed Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method
title_sort predicting influenza antigenicity from hemagglutintin sequence data based on a joint random forest method
publisher Nature Publishing Group
publishDate 2020
url https://scholarbank.nus.edu.sg/handle/10635/178615
_version_ 1821222330440876032