Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence

10.1007/s00204-018-2213-0

Saved in:
Bibliographic Details
Main Authors: Lee, J.-Y.J, Miller, J.A, Basu, S, Kee, T.-Z.V, Loo, L.-H
Other Authors: DEPT OF PHARMACOLOGY
Format: Article
Published: Springer Verlag 2020
Subjects:
DNA
Online Access:https://scholarbank.nus.edu.sg/handle/10635/179035
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-179035
record_format dspace
spelling sg-nus-scholar.10635-1790352023-08-07T09:33:59Z Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence Lee, J.-Y.J Miller, J.A Basu, S Kee, T.-Z.V Loo, L.-H DEPT OF PHARMACOLOGY amiodarone aristolochic acid bleomycin butylcresol cadmium chloride carbamazepine DNA doxorubicin lithium chloride myrcene nitrofurantoin nystatin ochratoxin paraquat patulin phalloidin phenylenediamine skatole tenofovir xenobiotic agent Article artificial intelligence automation BEAS-2B cell line cell viability assay chemical structure controlled study diagnostic accuracy diagnostic test accuracy study DNA damage response DNA strand breakage HBEC cell line (bronchial epithelium) high throughput in vitro phenotypic profiling for toxicity prediction high throughput screening human human cell in vitro study in vivo study lung cell line lung toxicity phenotype predictive value priority journal sensitivity and specificity A-549 cell line bronchus cell line cell survival chemistry drug effect high throughput screening lung pathology procedures toxicity testing A549 Cells Artificial Intelligence Bronchi Cell Line Cell Survival High-Throughput Screening Assays Humans Lung Predictive Value of Tests Sensitivity and Specificity Toxicity Tests Xenobiotics 10.1007/s00204-018-2213-0 Archives of Toxicology 92 6 2055-2075 2020-10-22T07:24:25Z 2020-10-22T07:24:25Z 2018 Article Lee, J.-Y.J, Miller, J.A, Basu, S, Kee, T.-Z.V, Loo, L.-H (2018). Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence. Archives of Toxicology 92 (6) : 2055-2075. ScholarBank@NUS Repository. https://doi.org/10.1007/s00204-018-2213-0 03405761 https://scholarbank.nus.edu.sg/handle/10635/179035 Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Springer Verlag Unpaywall 20201031
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic amiodarone
aristolochic acid
bleomycin
butylcresol
cadmium chloride
carbamazepine
DNA
doxorubicin
lithium chloride
myrcene
nitrofurantoin
nystatin
ochratoxin
paraquat
patulin
phalloidin
phenylenediamine
skatole
tenofovir
xenobiotic agent
Article
artificial intelligence
automation
BEAS-2B cell line
cell viability assay
chemical structure
controlled study
diagnostic accuracy
diagnostic test accuracy study
DNA damage response
DNA strand breakage
HBEC cell line (bronchial epithelium)
high throughput in vitro phenotypic profiling for toxicity prediction
high throughput screening
human
human cell
in vitro study
in vivo study
lung cell line
lung toxicity
phenotype
predictive value
priority journal
sensitivity and specificity
A-549 cell line
bronchus
cell line
cell survival
chemistry
drug effect
high throughput screening
lung
pathology
procedures
toxicity testing
A549 Cells
Artificial Intelligence
Bronchi
Cell Line
Cell Survival
High-Throughput Screening Assays
Humans
Lung
Predictive Value of Tests
Sensitivity and Specificity
Toxicity Tests
Xenobiotics
spellingShingle amiodarone
aristolochic acid
bleomycin
butylcresol
cadmium chloride
carbamazepine
DNA
doxorubicin
lithium chloride
myrcene
nitrofurantoin
nystatin
ochratoxin
paraquat
patulin
phalloidin
phenylenediamine
skatole
tenofovir
xenobiotic agent
Article
artificial intelligence
automation
BEAS-2B cell line
cell viability assay
chemical structure
controlled study
diagnostic accuracy
diagnostic test accuracy study
DNA damage response
DNA strand breakage
HBEC cell line (bronchial epithelium)
high throughput in vitro phenotypic profiling for toxicity prediction
high throughput screening
human
human cell
in vitro study
in vivo study
lung cell line
lung toxicity
phenotype
predictive value
priority journal
sensitivity and specificity
A-549 cell line
bronchus
cell line
cell survival
chemistry
drug effect
high throughput screening
lung
pathology
procedures
toxicity testing
A549 Cells
Artificial Intelligence
Bronchi
Cell Line
Cell Survival
High-Throughput Screening Assays
Humans
Lung
Predictive Value of Tests
Sensitivity and Specificity
Toxicity Tests
Xenobiotics
Lee, J.-Y.J
Miller, J.A
Basu, S
Kee, T.-Z.V
Loo, L.-H
Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence
description 10.1007/s00204-018-2213-0
author2 DEPT OF PHARMACOLOGY
author_facet DEPT OF PHARMACOLOGY
Lee, J.-Y.J
Miller, J.A
Basu, S
Kee, T.-Z.V
Loo, L.-H
format Article
author Lee, J.-Y.J
Miller, J.A
Basu, S
Kee, T.-Z.V
Loo, L.-H
author_sort Lee, J.-Y.J
title Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence
title_short Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence
title_full Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence
title_fullStr Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence
title_full_unstemmed Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence
title_sort building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence
publisher Springer Verlag
publishDate 2020
url https://scholarbank.nus.edu.sg/handle/10635/179035
_version_ 1779152419884630016