Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic

10.1038/srep39489

Saved in:
Bibliographic Details
Main Authors: Yebra, G, Hodcroft, E.B, Ragonnet-Cronin, M.L
Other Authors: MEDICINE
Format: Article
Published: Nature Publishing Group 2020
Subjects:
HIV
Online Access:https://scholarbank.nus.edu.sg/handle/10635/179774
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-179774
record_format dspace
spelling sg-nus-scholar.10635-1797742024-04-18T02:13:37Z Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic Yebra, G Hodcroft, E.B Ragonnet-Cronin, M.L MEDICINE cohort analysis envelope gene epidemic genetics human Human immunodeficiency virus Human immunodeficiency virus infection molecular epidemiology phylogeny regression analysis reproducibility South Africa statistical model structural gene United Kingdom virology virus genome Cohort Studies Epidemics Genes, env Genes, gag Genes, pol Genome, Viral HIV HIV Infections Humans Likelihood Functions Molecular Epidemiology Phylogeny Regression Analysis Reproducibility of Results South Africa United Kingdom 10.1038/srep39489 Scientific Reports 6 39489 2020-10-26T03:03:36Z 2020-10-26T03:03:36Z 2016 Article Yebra, G, Hodcroft, E.B, Ragonnet-Cronin, M.L (2016). Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic. Scientific Reports 6 : 39489. ScholarBank@NUS Repository. https://doi.org/10.1038/srep39489 2045-2322 https://scholarbank.nus.edu.sg/handle/10635/179774 Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Nature Publishing Group Unpaywall 20201031
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic cohort analysis
envelope gene
epidemic
genetics
human
Human immunodeficiency virus
Human immunodeficiency virus infection
molecular epidemiology
phylogeny
regression analysis
reproducibility
South Africa
statistical model
structural gene
United Kingdom
virology
virus genome
Cohort Studies
Epidemics
Genes, env
Genes, gag
Genes, pol
Genome, Viral
HIV
HIV Infections
Humans
Likelihood Functions
Molecular Epidemiology
Phylogeny
Regression Analysis
Reproducibility of Results
South Africa
United Kingdom
spellingShingle cohort analysis
envelope gene
epidemic
genetics
human
Human immunodeficiency virus
Human immunodeficiency virus infection
molecular epidemiology
phylogeny
regression analysis
reproducibility
South Africa
statistical model
structural gene
United Kingdom
virology
virus genome
Cohort Studies
Epidemics
Genes, env
Genes, gag
Genes, pol
Genome, Viral
HIV
HIV Infections
Humans
Likelihood Functions
Molecular Epidemiology
Phylogeny
Regression Analysis
Reproducibility of Results
South Africa
United Kingdom
Yebra, G
Hodcroft, E.B
Ragonnet-Cronin, M.L
Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic
description 10.1038/srep39489
author2 MEDICINE
author_facet MEDICINE
Yebra, G
Hodcroft, E.B
Ragonnet-Cronin, M.L
format Article
author Yebra, G
Hodcroft, E.B
Ragonnet-Cronin, M.L
author_sort Yebra, G
title Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic
title_short Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic
title_full Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic
title_fullStr Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic
title_full_unstemmed Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic
title_sort using nearly full-genome hiv sequence data improves phylogeny reconstruction in a simulated epidemic
publisher Nature Publishing Group
publishDate 2020
url https://scholarbank.nus.edu.sg/handle/10635/179774
_version_ 1800914569490595840