Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic
10.1038/srep39489
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Nature Publishing Group
2020
|
Subjects: | |
Online Access: | https://scholarbank.nus.edu.sg/handle/10635/179774 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | National University of Singapore |
id |
sg-nus-scholar.10635-179774 |
---|---|
record_format |
dspace |
spelling |
sg-nus-scholar.10635-1797742024-04-18T02:13:37Z Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic Yebra, G Hodcroft, E.B Ragonnet-Cronin, M.L MEDICINE cohort analysis envelope gene epidemic genetics human Human immunodeficiency virus Human immunodeficiency virus infection molecular epidemiology phylogeny regression analysis reproducibility South Africa statistical model structural gene United Kingdom virology virus genome Cohort Studies Epidemics Genes, env Genes, gag Genes, pol Genome, Viral HIV HIV Infections Humans Likelihood Functions Molecular Epidemiology Phylogeny Regression Analysis Reproducibility of Results South Africa United Kingdom 10.1038/srep39489 Scientific Reports 6 39489 2020-10-26T03:03:36Z 2020-10-26T03:03:36Z 2016 Article Yebra, G, Hodcroft, E.B, Ragonnet-Cronin, M.L (2016). Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic. Scientific Reports 6 : 39489. ScholarBank@NUS Repository. https://doi.org/10.1038/srep39489 2045-2322 https://scholarbank.nus.edu.sg/handle/10635/179774 Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Nature Publishing Group Unpaywall 20201031 |
institution |
National University of Singapore |
building |
NUS Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NUS Library |
collection |
ScholarBank@NUS |
topic |
cohort analysis envelope gene epidemic genetics human Human immunodeficiency virus Human immunodeficiency virus infection molecular epidemiology phylogeny regression analysis reproducibility South Africa statistical model structural gene United Kingdom virology virus genome Cohort Studies Epidemics Genes, env Genes, gag Genes, pol Genome, Viral HIV HIV Infections Humans Likelihood Functions Molecular Epidemiology Phylogeny Regression Analysis Reproducibility of Results South Africa United Kingdom |
spellingShingle |
cohort analysis envelope gene epidemic genetics human Human immunodeficiency virus Human immunodeficiency virus infection molecular epidemiology phylogeny regression analysis reproducibility South Africa statistical model structural gene United Kingdom virology virus genome Cohort Studies Epidemics Genes, env Genes, gag Genes, pol Genome, Viral HIV HIV Infections Humans Likelihood Functions Molecular Epidemiology Phylogeny Regression Analysis Reproducibility of Results South Africa United Kingdom Yebra, G Hodcroft, E.B Ragonnet-Cronin, M.L Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic |
description |
10.1038/srep39489 |
author2 |
MEDICINE |
author_facet |
MEDICINE Yebra, G Hodcroft, E.B Ragonnet-Cronin, M.L |
format |
Article |
author |
Yebra, G Hodcroft, E.B Ragonnet-Cronin, M.L |
author_sort |
Yebra, G |
title |
Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic |
title_short |
Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic |
title_full |
Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic |
title_fullStr |
Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic |
title_full_unstemmed |
Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic |
title_sort |
using nearly full-genome hiv sequence data improves phylogeny reconstruction in a simulated epidemic |
publisher |
Nature Publishing Group |
publishDate |
2020 |
url |
https://scholarbank.nus.edu.sg/handle/10635/179774 |
_version_ |
1800914569490595840 |