De novo mutations in PLXND1 and REV3L cause Möbius syndrome

10.1038/ncomms8199

Saved in:
Bibliographic Details
Main Authors: Tomas-Roca, L, Tsaalbi-Shtylik, A, Jansen, J.G, Singh, M.K, Epstein, J.A, Altunoglu, U, Verzijl, H, Soria, L, Van Beusekom, E, Roscioli, T, Iqbal, Z, Gilissen, C, Hoischen, A, De Brouwer, A.P.M, Erasmus, C, Schubert, D, Brunner, H, Pérez Aytés, A, Marin, F, Aroca, P, Kayserili, H, Carta, A, De Wind, N, Padberg, G.W, Van Bokhoven, H
Other Authors: DUKE-NUS MEDICAL SCHOOL
Format: Article
Published: Nature Publishing Group 2020
Subjects:
DNA
Mus
Online Access:https://scholarbank.nus.edu.sg/handle/10635/180463
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-180463
record_format dspace
spelling sg-nus-scholar.10635-1804632023-10-31T21:19:02Z De novo mutations in PLXND1 and REV3L cause Möbius syndrome Tomas-Roca, L Tsaalbi-Shtylik, A Jansen, J.G Singh, M.K Epstein, J.A Altunoglu, U Verzijl, H Soria, L Van Beusekom, E Roscioli, T Iqbal, Z Gilissen, C Hoischen, A De Brouwer, A.P.M Erasmus, C Schubert, D Brunner, H Pérez Aytés, A Marin, F Aroca, P Kayserili, H Carta, A De Wind, N Padberg, G.W Van Bokhoven, H DUKE-NUS MEDICAL SCHOOL plexin PLXND1 protein protein REV3L protein semaphorin unclassified drug DNA binding protein DNA directed DNA polymerase nerve cell adhesion molecule PLXND1 protein, human REV3L protein, human DNA etiology mutation neurology rodent amino acid substitution animal cell animal tissue anterior commissure Article brain development cell migration cell proliferation cell survival cerebellum clinical article controlled study corpus callosum corpus striatum dendritic cell DNA damage DNA synthesis embryo enzyme active site exome exon female forebrain frameshift mutation gene mutation heterozygote human hypoplasia in situ hybridization loss of function mutation male meiotic recombination mesencephalon missense mutation Moebius syndrome motoneuron motoneuron nucleus mouse newborn nonhuman nonsense mutation phenotype protein phosphorylation reverse transcription polymerase chain reaction rhombencephalon spinal ganglion animal genetics Moebius syndrome mutant mouse strain mutation Mus Animals Cell Adhesion Molecules, Neuronal DNA Damage DNA-Binding Proteins DNA-Directed DNA Polymerase Exome Heterozygote Humans Mice Mice, Mutant Strains Mobius Syndrome Mutation 10.1038/ncomms8199 Nature Communications 6 7199 2020-10-26T09:05:14Z 2020-10-26T09:05:14Z 2015 Article Tomas-Roca, L, Tsaalbi-Shtylik, A, Jansen, J.G, Singh, M.K, Epstein, J.A, Altunoglu, U, Verzijl, H, Soria, L, Van Beusekom, E, Roscioli, T, Iqbal, Z, Gilissen, C, Hoischen, A, De Brouwer, A.P.M, Erasmus, C, Schubert, D, Brunner, H, Pérez Aytés, A, Marin, F, Aroca, P, Kayserili, H, Carta, A, De Wind, N, Padberg, G.W, Van Bokhoven, H (2015). De novo mutations in PLXND1 and REV3L cause Möbius syndrome. Nature Communications 6 : 7199. ScholarBank@NUS Repository. https://doi.org/10.1038/ncomms8199 2041-1723 https://scholarbank.nus.edu.sg/handle/10635/180463 Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Nature Publishing Group Unpaywall 20201031
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic plexin
PLXND1 protein
protein
REV3L protein
semaphorin
unclassified drug
DNA binding protein
DNA directed DNA polymerase
nerve cell adhesion molecule
PLXND1 protein, human
REV3L protein, human
DNA
etiology
mutation
neurology
rodent
amino acid substitution
animal cell
animal tissue
anterior commissure
Article
brain development
cell migration
cell proliferation
cell survival
cerebellum
clinical article
controlled study
corpus callosum
corpus striatum
dendritic cell
DNA damage
DNA synthesis
embryo
enzyme active site
exome
exon
female
forebrain
frameshift mutation
gene mutation
heterozygote
human
hypoplasia
in situ hybridization
loss of function mutation
male
meiotic recombination
mesencephalon
missense mutation
Moebius syndrome
motoneuron
motoneuron nucleus
mouse
newborn
nonhuman
nonsense mutation
phenotype
protein phosphorylation
reverse transcription polymerase chain reaction
rhombencephalon
spinal ganglion
animal
genetics
Moebius syndrome
mutant mouse strain
mutation
Mus
Animals
Cell Adhesion Molecules, Neuronal
DNA Damage
DNA-Binding Proteins
DNA-Directed DNA Polymerase
Exome
Heterozygote
Humans
Mice
Mice, Mutant Strains
Mobius Syndrome
Mutation
spellingShingle plexin
PLXND1 protein
protein
REV3L protein
semaphorin
unclassified drug
DNA binding protein
DNA directed DNA polymerase
nerve cell adhesion molecule
PLXND1 protein, human
REV3L protein, human
DNA
etiology
mutation
neurology
rodent
amino acid substitution
animal cell
animal tissue
anterior commissure
Article
brain development
cell migration
cell proliferation
cell survival
cerebellum
clinical article
controlled study
corpus callosum
corpus striatum
dendritic cell
DNA damage
DNA synthesis
embryo
enzyme active site
exome
exon
female
forebrain
frameshift mutation
gene mutation
heterozygote
human
hypoplasia
in situ hybridization
loss of function mutation
male
meiotic recombination
mesencephalon
missense mutation
Moebius syndrome
motoneuron
motoneuron nucleus
mouse
newborn
nonhuman
nonsense mutation
phenotype
protein phosphorylation
reverse transcription polymerase chain reaction
rhombencephalon
spinal ganglion
animal
genetics
Moebius syndrome
mutant mouse strain
mutation
Mus
Animals
Cell Adhesion Molecules, Neuronal
DNA Damage
DNA-Binding Proteins
DNA-Directed DNA Polymerase
Exome
Heterozygote
Humans
Mice
Mice, Mutant Strains
Mobius Syndrome
Mutation
Tomas-Roca, L
Tsaalbi-Shtylik, A
Jansen, J.G
Singh, M.K
Epstein, J.A
Altunoglu, U
Verzijl, H
Soria, L
Van Beusekom, E
Roscioli, T
Iqbal, Z
Gilissen, C
Hoischen, A
De Brouwer, A.P.M
Erasmus, C
Schubert, D
Brunner, H
Pérez Aytés, A
Marin, F
Aroca, P
Kayserili, H
Carta, A
De Wind, N
Padberg, G.W
Van Bokhoven, H
De novo mutations in PLXND1 and REV3L cause Möbius syndrome
description 10.1038/ncomms8199
author2 DUKE-NUS MEDICAL SCHOOL
author_facet DUKE-NUS MEDICAL SCHOOL
Tomas-Roca, L
Tsaalbi-Shtylik, A
Jansen, J.G
Singh, M.K
Epstein, J.A
Altunoglu, U
Verzijl, H
Soria, L
Van Beusekom, E
Roscioli, T
Iqbal, Z
Gilissen, C
Hoischen, A
De Brouwer, A.P.M
Erasmus, C
Schubert, D
Brunner, H
Pérez Aytés, A
Marin, F
Aroca, P
Kayserili, H
Carta, A
De Wind, N
Padberg, G.W
Van Bokhoven, H
format Article
author Tomas-Roca, L
Tsaalbi-Shtylik, A
Jansen, J.G
Singh, M.K
Epstein, J.A
Altunoglu, U
Verzijl, H
Soria, L
Van Beusekom, E
Roscioli, T
Iqbal, Z
Gilissen, C
Hoischen, A
De Brouwer, A.P.M
Erasmus, C
Schubert, D
Brunner, H
Pérez Aytés, A
Marin, F
Aroca, P
Kayserili, H
Carta, A
De Wind, N
Padberg, G.W
Van Bokhoven, H
author_sort Tomas-Roca, L
title De novo mutations in PLXND1 and REV3L cause Möbius syndrome
title_short De novo mutations in PLXND1 and REV3L cause Möbius syndrome
title_full De novo mutations in PLXND1 and REV3L cause Möbius syndrome
title_fullStr De novo mutations in PLXND1 and REV3L cause Möbius syndrome
title_full_unstemmed De novo mutations in PLXND1 and REV3L cause Möbius syndrome
title_sort de novo mutations in plxnd1 and rev3l cause möbius syndrome
publisher Nature Publishing Group
publishDate 2020
url https://scholarbank.nus.edu.sg/handle/10635/180463
_version_ 1781792397170049024