Gradient boosting machines, a tutorial

10.3389/fnbot.2013.00021

Saved in:
Bibliographic Details
Main Authors: Natekin, A, Knoll, A
Other Authors: MECHANICAL ENGINEERING
Format: Article
Published: 2020
Subjects:
Online Access:https://scholarbank.nus.edu.sg/handle/10635/181584
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-181584
record_format dspace
spelling sg-nus-scholar.10635-1815842024-04-04T02:35:43Z Gradient boosting machines, a tutorial Natekin, A Knoll, A MECHANICAL ENGINEERING adaboost loss function article classification algorithm conceptual framework custom base learner function decision tree electromyogram electromyograph electrode explanatory variable gradient boosting machine learning human learning algorithm linear regression analysis logistic regression analysis loss function machine learning Markov random field mathematical parameters methodology pattern recognition physical activity random forest response variable robotics smooth model statistical model support vector machine wavelet analysis 10.3389/fnbot.2013.00021 Frontiers in Neurorobotics 7 DEC Article 21 2020-10-27T11:23:18Z 2020-10-27T11:23:18Z 2013 Article Natekin, A, Knoll, A (2013). Gradient boosting machines, a tutorial. Frontiers in Neurorobotics 7 (DEC) : Article 21. ScholarBank@NUS Repository. https://doi.org/10.3389/fnbot.2013.00021 16625218 https://scholarbank.nus.edu.sg/handle/10635/181584 Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Unpaywall 20201031
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic adaboost loss function
article
classification algorithm
conceptual framework
custom base learner function
decision tree
electromyogram
electromyograph electrode
explanatory variable
gradient boosting machine learning
human
learning algorithm
linear regression analysis
logistic regression analysis
loss function
machine learning
Markov random field
mathematical parameters
methodology
pattern recognition
physical activity
random forest
response variable
robotics
smooth model
statistical model
support vector machine
wavelet analysis
spellingShingle adaboost loss function
article
classification algorithm
conceptual framework
custom base learner function
decision tree
electromyogram
electromyograph electrode
explanatory variable
gradient boosting machine learning
human
learning algorithm
linear regression analysis
logistic regression analysis
loss function
machine learning
Markov random field
mathematical parameters
methodology
pattern recognition
physical activity
random forest
response variable
robotics
smooth model
statistical model
support vector machine
wavelet analysis
Natekin, A
Knoll, A
Gradient boosting machines, a tutorial
description 10.3389/fnbot.2013.00021
author2 MECHANICAL ENGINEERING
author_facet MECHANICAL ENGINEERING
Natekin, A
Knoll, A
format Article
author Natekin, A
Knoll, A
author_sort Natekin, A
title Gradient boosting machines, a tutorial
title_short Gradient boosting machines, a tutorial
title_full Gradient boosting machines, a tutorial
title_fullStr Gradient boosting machines, a tutorial
title_full_unstemmed Gradient boosting machines, a tutorial
title_sort gradient boosting machines, a tutorial
publishDate 2020
url https://scholarbank.nus.edu.sg/handle/10635/181584
_version_ 1800914644352630784