Skimming digits: Neuromorphic classification of spike-encoded images

10.3389/fnins.2016.00184

Saved in:
Bibliographic Details
Main Authors: Cohen, G.K, Orchard, G, Leng, S.-H, Tapson, J, Benosman, R.B, van Schaik, A
Other Authors: TEMASEK LABORATORIES
Format: Article
Published: 2020
Subjects:
Online Access:https://scholarbank.nus.edu.sg/handle/10635/183340
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-183340
record_format dspace
spelling sg-nus-scholar.10635-1833402023-08-29T09:55:40Z Skimming digits: Neuromorphic classification of spike-encoded images Cohen, G.K Orchard, G Leng, S.-H Tapson, J Benosman, R.B van Schaik, A TEMASEK LABORATORIES Article artificial neural network biosensor computer computer program computer simulation dendrite equipment design image analysis image processing imaging system kernel method learning algorithm mathematical computing measurement accuracy silicon retina spike Spiking Neural Network statistical distribution Synaptic Kernel Inverse Method validation process visual information visual system 10.3389/fnins.2016.00184 Frontiers in Neuroscience 10 APR 184 2020-11-10T07:58:50Z 2020-11-10T07:58:50Z 2016 Article Cohen, G.K, Orchard, G, Leng, S.-H, Tapson, J, Benosman, R.B, van Schaik, A (2016). Skimming digits: Neuromorphic classification of spike-encoded images. Frontiers in Neuroscience 10 (APR) : 184. ScholarBank@NUS Repository. https://doi.org/10.3389/fnins.2016.00184 16624548 https://scholarbank.nus.edu.sg/handle/10635/183340 Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Unpaywall 20201031
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic Article
artificial neural network
biosensor
computer
computer program
computer simulation
dendrite
equipment design
image analysis
image processing
imaging system
kernel method
learning algorithm
mathematical computing
measurement accuracy
silicon retina
spike
Spiking Neural Network
statistical distribution
Synaptic Kernel Inverse Method
validation process
visual information
visual system
spellingShingle Article
artificial neural network
biosensor
computer
computer program
computer simulation
dendrite
equipment design
image analysis
image processing
imaging system
kernel method
learning algorithm
mathematical computing
measurement accuracy
silicon retina
spike
Spiking Neural Network
statistical distribution
Synaptic Kernel Inverse Method
validation process
visual information
visual system
Cohen, G.K
Orchard, G
Leng, S.-H
Tapson, J
Benosman, R.B
van Schaik, A
Skimming digits: Neuromorphic classification of spike-encoded images
description 10.3389/fnins.2016.00184
author2 TEMASEK LABORATORIES
author_facet TEMASEK LABORATORIES
Cohen, G.K
Orchard, G
Leng, S.-H
Tapson, J
Benosman, R.B
van Schaik, A
format Article
author Cohen, G.K
Orchard, G
Leng, S.-H
Tapson, J
Benosman, R.B
van Schaik, A
author_sort Cohen, G.K
title Skimming digits: Neuromorphic classification of spike-encoded images
title_short Skimming digits: Neuromorphic classification of spike-encoded images
title_full Skimming digits: Neuromorphic classification of spike-encoded images
title_fullStr Skimming digits: Neuromorphic classification of spike-encoded images
title_full_unstemmed Skimming digits: Neuromorphic classification of spike-encoded images
title_sort skimming digits: neuromorphic classification of spike-encoded images
publishDate 2020
url https://scholarbank.nus.edu.sg/handle/10635/183340
_version_ 1779153009318559744