A new perspective for the training assessment: Machine learning-based neurometric for augmented user's evaluation

10.3389/fnins.2017.00325

Saved in:
Bibliographic Details
Main Authors: Borghini, G, Aricò, P, Di Flumeri, G, Sciaraffa, N, Colosimo, A, Herrero, M.-T, Bezerianos, A, Thakor, N.V, Babiloni, F
Other Authors: DEPT OF ELECTRICAL & COMPUTER ENGG
Format: Article
Published: Frontiers Media 2020
Subjects:
Online Access:https://scholarbank.nus.edu.sg/handle/10635/183518
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-183518
record_format dspace
spelling sg-nus-scholar.10635-1835182023-11-01T07:59:12Z A new perspective for the training assessment: Machine learning-based neurometric for augmented user's evaluation Borghini, G Aricò, P Di Flumeri, G Sciaraffa, N Colosimo, A Herrero, M.-T Bezerianos, A Thakor, N.V Babiloni, F DEPT OF ELECTRICAL & COMPUTER ENGG LIFE SCIENCES INSTITUTE brain function clinical article electroencephalogram female human machine learning male quantitative study training 10.3389/fnins.2017.00325 Frontiers in Neuroscience 11 JUN 325 2020-11-17T04:41:15Z 2020-11-17T04:41:15Z 2017 Article Borghini, G, Aricò, P, Di Flumeri, G, Sciaraffa, N, Colosimo, A, Herrero, M.-T, Bezerianos, A, Thakor, N.V, Babiloni, F (2017). A new perspective for the training assessment: Machine learning-based neurometric for augmented user's evaluation. Frontiers in Neuroscience 11 (JUN) : 325. ScholarBank@NUS Repository. https://doi.org/10.3389/fnins.2017.00325 1662-4548 https://scholarbank.nus.edu.sg/handle/10635/183518 Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Frontiers Media Unpaywall 20201031
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic brain function
clinical article
electroencephalogram
female
human
machine learning
male
quantitative study
training
spellingShingle brain function
clinical article
electroencephalogram
female
human
machine learning
male
quantitative study
training
Borghini, G
Aricò, P
Di Flumeri, G
Sciaraffa, N
Colosimo, A
Herrero, M.-T
Bezerianos, A
Thakor, N.V
Babiloni, F
A new perspective for the training assessment: Machine learning-based neurometric for augmented user's evaluation
description 10.3389/fnins.2017.00325
author2 DEPT OF ELECTRICAL & COMPUTER ENGG
author_facet DEPT OF ELECTRICAL & COMPUTER ENGG
Borghini, G
Aricò, P
Di Flumeri, G
Sciaraffa, N
Colosimo, A
Herrero, M.-T
Bezerianos, A
Thakor, N.V
Babiloni, F
format Article
author Borghini, G
Aricò, P
Di Flumeri, G
Sciaraffa, N
Colosimo, A
Herrero, M.-T
Bezerianos, A
Thakor, N.V
Babiloni, F
author_sort Borghini, G
title A new perspective for the training assessment: Machine learning-based neurometric for augmented user's evaluation
title_short A new perspective for the training assessment: Machine learning-based neurometric for augmented user's evaluation
title_full A new perspective for the training assessment: Machine learning-based neurometric for augmented user's evaluation
title_fullStr A new perspective for the training assessment: Machine learning-based neurometric for augmented user's evaluation
title_full_unstemmed A new perspective for the training assessment: Machine learning-based neurometric for augmented user's evaluation
title_sort new perspective for the training assessment: machine learning-based neurometric for augmented user's evaluation
publisher Frontiers Media
publishDate 2020
url https://scholarbank.nus.edu.sg/handle/10635/183518
_version_ 1781792630633398272