Comparative study of machine learning algorithms to classify hand gestures from deployable and breathable kirigami-based electrical impedance bracelet

10.3390/mti4030047

Saved in:
Bibliographic Details
Main Authors: Vedhagiri, G.P.J., Wang, X.Z., Kumar, K.S., Ren, H.
Other Authors: BIOMEDICAL ENGINEERING
Format: Article
Published: MDPI AG 2021
Subjects:
Online Access:https://scholarbank.nus.edu.sg/handle/10635/197561
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-197561
record_format dspace
spelling sg-nus-scholar.10635-1975612024-04-15T12:16:56Z Comparative study of machine learning algorithms to classify hand gestures from deployable and breathable kirigami-based electrical impedance bracelet Vedhagiri, G.P.J. Wang, X.Z. Kumar, K.S. Ren, H. BIOMEDICAL ENGINEERING MECHANICAL ENGINEERING Electrical impedance tomography Gesture classification Kirigami wearable device Machine learning 10.3390/mti4030047 Multimodal Technologies and Interaction 4 3 1-Oct 2021-08-18T03:32:14Z 2021-08-18T03:32:14Z 2020 Article Vedhagiri, G.P.J., Wang, X.Z., Kumar, K.S., Ren, H. (2020). Comparative study of machine learning algorithms to classify hand gestures from deployable and breathable kirigami-based electrical impedance bracelet. Multimodal Technologies and Interaction 4 (3) : 1-Oct. ScholarBank@NUS Repository. https://doi.org/10.3390/mti4030047 24144088 https://scholarbank.nus.edu.sg/handle/10635/197561 Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ MDPI AG Scopus OA2020
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic Electrical impedance tomography
Gesture classification
Kirigami wearable device
Machine learning
spellingShingle Electrical impedance tomography
Gesture classification
Kirigami wearable device
Machine learning
Vedhagiri, G.P.J.
Wang, X.Z.
Kumar, K.S.
Ren, H.
Comparative study of machine learning algorithms to classify hand gestures from deployable and breathable kirigami-based electrical impedance bracelet
description 10.3390/mti4030047
author2 BIOMEDICAL ENGINEERING
author_facet BIOMEDICAL ENGINEERING
Vedhagiri, G.P.J.
Wang, X.Z.
Kumar, K.S.
Ren, H.
format Article
author Vedhagiri, G.P.J.
Wang, X.Z.
Kumar, K.S.
Ren, H.
author_sort Vedhagiri, G.P.J.
title Comparative study of machine learning algorithms to classify hand gestures from deployable and breathable kirigami-based electrical impedance bracelet
title_short Comparative study of machine learning algorithms to classify hand gestures from deployable and breathable kirigami-based electrical impedance bracelet
title_full Comparative study of machine learning algorithms to classify hand gestures from deployable and breathable kirigami-based electrical impedance bracelet
title_fullStr Comparative study of machine learning algorithms to classify hand gestures from deployable and breathable kirigami-based electrical impedance bracelet
title_full_unstemmed Comparative study of machine learning algorithms to classify hand gestures from deployable and breathable kirigami-based electrical impedance bracelet
title_sort comparative study of machine learning algorithms to classify hand gestures from deployable and breathable kirigami-based electrical impedance bracelet
publisher MDPI AG
publishDate 2021
url https://scholarbank.nus.edu.sg/handle/10635/197561
_version_ 1800914911732170752