Leveraging machine learning techniques and engineering of multi-nature features for national daily regional ambulance demand prediction

10.3390/ijerph17114179

Saved in:
Bibliographic Details
Main Authors: Lin, A.X., Ho, A.F.W., Cheong, K.H., Li, Z., Cai, W., Chee, M.L., Ng, Y.Y., Xiao, X., Ong, M.E.H.
Other Authors: DEAN'S OFFICE (DUKE-NUS MEDICAL SCHOOL)
Format: Article
Published: MDPI AG 2021
Subjects:
Online Access:https://scholarbank.nus.edu.sg/handle/10635/198187
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-198187
record_format dspace
spelling sg-nus-scholar.10635-1981872024-04-25T06:34:13Z Leveraging machine learning techniques and engineering of multi-nature features for national daily regional ambulance demand prediction Lin, A.X. Ho, A.F.W. Cheong, K.H. Li, Z. Cai, W. Chee, M.L. Ng, Y.Y. Xiao, X. Ong, M.E.H. DEAN'S OFFICE (DUKE-NUS MEDICAL SCHOOL) DEPARTMENT OF COMPUTER SCIENCE Ambulance deployment Complexity science Demand prediction Emergency medical services Emergency medicine Geospatial Health informatics Nonlinear dynamics 10.3390/ijerph17114179 International Journal of Environmental Research and Public Health 17 11 15-Jan 2021-08-19T04:59:35Z 2021-08-19T04:59:35Z 2020 Article Lin, A.X., Ho, A.F.W., Cheong, K.H., Li, Z., Cai, W., Chee, M.L., Ng, Y.Y., Xiao, X., Ong, M.E.H. (2020). Leveraging machine learning techniques and engineering of multi-nature features for national daily regional ambulance demand prediction. International Journal of Environmental Research and Public Health 17 (11) : 15-Jan. ScholarBank@NUS Repository. https://doi.org/10.3390/ijerph17114179 1661-7827 https://scholarbank.nus.edu.sg/handle/10635/198187 Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ MDPI AG Scopus OA2020
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic Ambulance deployment
Complexity science
Demand prediction
Emergency medical services
Emergency medicine
Geospatial
Health informatics
Nonlinear dynamics
spellingShingle Ambulance deployment
Complexity science
Demand prediction
Emergency medical services
Emergency medicine
Geospatial
Health informatics
Nonlinear dynamics
Lin, A.X.
Ho, A.F.W.
Cheong, K.H.
Li, Z.
Cai, W.
Chee, M.L.
Ng, Y.Y.
Xiao, X.
Ong, M.E.H.
Leveraging machine learning techniques and engineering of multi-nature features for national daily regional ambulance demand prediction
description 10.3390/ijerph17114179
author2 DEAN'S OFFICE (DUKE-NUS MEDICAL SCHOOL)
author_facet DEAN'S OFFICE (DUKE-NUS MEDICAL SCHOOL)
Lin, A.X.
Ho, A.F.W.
Cheong, K.H.
Li, Z.
Cai, W.
Chee, M.L.
Ng, Y.Y.
Xiao, X.
Ong, M.E.H.
format Article
author Lin, A.X.
Ho, A.F.W.
Cheong, K.H.
Li, Z.
Cai, W.
Chee, M.L.
Ng, Y.Y.
Xiao, X.
Ong, M.E.H.
author_sort Lin, A.X.
title Leveraging machine learning techniques and engineering of multi-nature features for national daily regional ambulance demand prediction
title_short Leveraging machine learning techniques and engineering of multi-nature features for national daily regional ambulance demand prediction
title_full Leveraging machine learning techniques and engineering of multi-nature features for national daily regional ambulance demand prediction
title_fullStr Leveraging machine learning techniques and engineering of multi-nature features for national daily regional ambulance demand prediction
title_full_unstemmed Leveraging machine learning techniques and engineering of multi-nature features for national daily regional ambulance demand prediction
title_sort leveraging machine learning techniques and engineering of multi-nature features for national daily regional ambulance demand prediction
publisher MDPI AG
publishDate 2021
url https://scholarbank.nus.edu.sg/handle/10635/198187
_version_ 1800914943099273216