Deep learning-enabled prediction of 2D material breakdown
10.1088/1361-6528/abd655
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
IOP PUBLISHING LTD
2021
|
Subjects: | |
Online Access: | https://scholarbank.nus.edu.sg/handle/10635/202309 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | National University of Singapore |
Language: | English |
id |
sg-nus-scholar.10635-202309 |
---|---|
record_format |
dspace |
spelling |
sg-nus-scholar.10635-2023092024-04-17T10:05:15Z Deep learning-enabled prediction of 2D material breakdown Huan, Yan Qi Liu, Yincheng Goh, Kuan Eng Johnson Wong, Swee Liang Lau, Chit Siong PHYSICS Science & Technology Technology Physical Sciences Nanoscience & Nanotechnology Materials Science, Multidisciplinary Physics, Applied Science & Technology - Other Topics Materials Science Physics machine learning convolutional neural network long short-term memory electric breakdown transition metal dichalcogenides molybdenum disulfide field-effect transistor FIELD-EFFECT TRANSISTORS MONOLAYER MOS2 ELECTRICAL BREAKDOWN INTEGRATED-CIRCUITS GRAPHENE 10.1088/1361-6528/abd655 NANOTECHNOLOGY 32 26 2021-10-08T00:35:23Z 2021-10-08T00:35:23Z 2021-06-25 2021-10-07T15:46:14Z Article Huan, Yan Qi, Liu, Yincheng, Goh, Kuan Eng Johnson, Wong, Swee Liang, Lau, Chit Siong (2021-06-25). Deep learning-enabled prediction of 2D material breakdown. NANOTECHNOLOGY 32 (26). ScholarBank@NUS Repository. https://doi.org/10.1088/1361-6528/abd655 09574484 13616528 https://scholarbank.nus.edu.sg/handle/10635/202309 en IOP PUBLISHING LTD Elements |
institution |
National University of Singapore |
building |
NUS Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NUS Library |
collection |
ScholarBank@NUS |
language |
English |
topic |
Science & Technology Technology Physical Sciences Nanoscience & Nanotechnology Materials Science, Multidisciplinary Physics, Applied Science & Technology - Other Topics Materials Science Physics machine learning convolutional neural network long short-term memory electric breakdown transition metal dichalcogenides molybdenum disulfide field-effect transistor FIELD-EFFECT TRANSISTORS MONOLAYER MOS2 ELECTRICAL BREAKDOWN INTEGRATED-CIRCUITS GRAPHENE |
spellingShingle |
Science & Technology Technology Physical Sciences Nanoscience & Nanotechnology Materials Science, Multidisciplinary Physics, Applied Science & Technology - Other Topics Materials Science Physics machine learning convolutional neural network long short-term memory electric breakdown transition metal dichalcogenides molybdenum disulfide field-effect transistor FIELD-EFFECT TRANSISTORS MONOLAYER MOS2 ELECTRICAL BREAKDOWN INTEGRATED-CIRCUITS GRAPHENE Huan, Yan Qi Liu, Yincheng Goh, Kuan Eng Johnson Wong, Swee Liang Lau, Chit Siong Deep learning-enabled prediction of 2D material breakdown |
description |
10.1088/1361-6528/abd655 |
author2 |
PHYSICS |
author_facet |
PHYSICS Huan, Yan Qi Liu, Yincheng Goh, Kuan Eng Johnson Wong, Swee Liang Lau, Chit Siong |
format |
Article |
author |
Huan, Yan Qi Liu, Yincheng Goh, Kuan Eng Johnson Wong, Swee Liang Lau, Chit Siong |
author_sort |
Huan, Yan Qi |
title |
Deep learning-enabled prediction of 2D material breakdown |
title_short |
Deep learning-enabled prediction of 2D material breakdown |
title_full |
Deep learning-enabled prediction of 2D material breakdown |
title_fullStr |
Deep learning-enabled prediction of 2D material breakdown |
title_full_unstemmed |
Deep learning-enabled prediction of 2D material breakdown |
title_sort |
deep learning-enabled prediction of 2d material breakdown |
publisher |
IOP PUBLISHING LTD |
publishDate |
2021 |
url |
https://scholarbank.nus.edu.sg/handle/10635/202309 |
_version_ |
1800915026474696704 |