Deep learning-enabled prediction of 2D material breakdown

10.1088/1361-6528/abd655

Saved in:
Bibliographic Details
Main Authors: Huan, Yan Qi, Liu, Yincheng, Goh, Kuan Eng Johnson, Wong, Swee Liang, Lau, Chit Siong
Other Authors: PHYSICS
Format: Article
Language:English
Published: IOP PUBLISHING LTD 2021
Subjects:
Online Access:https://scholarbank.nus.edu.sg/handle/10635/202309
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
Language: English
id sg-nus-scholar.10635-202309
record_format dspace
spelling sg-nus-scholar.10635-2023092024-04-17T10:05:15Z Deep learning-enabled prediction of 2D material breakdown Huan, Yan Qi Liu, Yincheng Goh, Kuan Eng Johnson Wong, Swee Liang Lau, Chit Siong PHYSICS Science & Technology Technology Physical Sciences Nanoscience & Nanotechnology Materials Science, Multidisciplinary Physics, Applied Science & Technology - Other Topics Materials Science Physics machine learning convolutional neural network long short-term memory electric breakdown transition metal dichalcogenides molybdenum disulfide field-effect transistor FIELD-EFFECT TRANSISTORS MONOLAYER MOS2 ELECTRICAL BREAKDOWN INTEGRATED-CIRCUITS GRAPHENE 10.1088/1361-6528/abd655 NANOTECHNOLOGY 32 26 2021-10-08T00:35:23Z 2021-10-08T00:35:23Z 2021-06-25 2021-10-07T15:46:14Z Article Huan, Yan Qi, Liu, Yincheng, Goh, Kuan Eng Johnson, Wong, Swee Liang, Lau, Chit Siong (2021-06-25). Deep learning-enabled prediction of 2D material breakdown. NANOTECHNOLOGY 32 (26). ScholarBank@NUS Repository. https://doi.org/10.1088/1361-6528/abd655 09574484 13616528 https://scholarbank.nus.edu.sg/handle/10635/202309 en IOP PUBLISHING LTD Elements
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
language English
topic Science & Technology
Technology
Physical Sciences
Nanoscience & Nanotechnology
Materials Science, Multidisciplinary
Physics, Applied
Science & Technology - Other Topics
Materials Science
Physics
machine learning
convolutional neural network
long short-term memory
electric breakdown
transition metal dichalcogenides
molybdenum disulfide
field-effect transistor
FIELD-EFFECT TRANSISTORS
MONOLAYER MOS2
ELECTRICAL BREAKDOWN
INTEGRATED-CIRCUITS
GRAPHENE
spellingShingle Science & Technology
Technology
Physical Sciences
Nanoscience & Nanotechnology
Materials Science, Multidisciplinary
Physics, Applied
Science & Technology - Other Topics
Materials Science
Physics
machine learning
convolutional neural network
long short-term memory
electric breakdown
transition metal dichalcogenides
molybdenum disulfide
field-effect transistor
FIELD-EFFECT TRANSISTORS
MONOLAYER MOS2
ELECTRICAL BREAKDOWN
INTEGRATED-CIRCUITS
GRAPHENE
Huan, Yan Qi
Liu, Yincheng
Goh, Kuan Eng Johnson
Wong, Swee Liang
Lau, Chit Siong
Deep learning-enabled prediction of 2D material breakdown
description 10.1088/1361-6528/abd655
author2 PHYSICS
author_facet PHYSICS
Huan, Yan Qi
Liu, Yincheng
Goh, Kuan Eng Johnson
Wong, Swee Liang
Lau, Chit Siong
format Article
author Huan, Yan Qi
Liu, Yincheng
Goh, Kuan Eng Johnson
Wong, Swee Liang
Lau, Chit Siong
author_sort Huan, Yan Qi
title Deep learning-enabled prediction of 2D material breakdown
title_short Deep learning-enabled prediction of 2D material breakdown
title_full Deep learning-enabled prediction of 2D material breakdown
title_fullStr Deep learning-enabled prediction of 2D material breakdown
title_full_unstemmed Deep learning-enabled prediction of 2D material breakdown
title_sort deep learning-enabled prediction of 2d material breakdown
publisher IOP PUBLISHING LTD
publishDate 2021
url https://scholarbank.nus.edu.sg/handle/10635/202309
_version_ 1800915026474696704