WHAT DO BANACH, STONE, GELFAND, KOLMOGOROV AND KAPLANSKY HAVE IN COMMON?
Bachelor's
Saved in:
Main Author: | LEE KOK WEI |
---|---|
Other Authors: | MATHEMATICS |
Published: |
2021
|
Online Access: | https://scholarbank.nus.edu.sg/handle/10635/204118 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | National University of Singapore |
Similar Items
-
Banach-Stone Theorems for maps preserving common zeros
by: Leung, D.H., et al.
Published: (2014) -
Kaplansky's solution to a counting problem
by: Sy, Janel G.
Published: (1998) -
GELFAND PAIRS OF FINITE AND COMPACT GROUPS
by: MAO YUANZHI
Published: (2021) -
FINITE GELFAND PAIRS AND ZONAL SPHERICAL FUNCTIONS
by: KOH SHIWEI ISAAC
Published: (2021) -
A general form of Gelfand-Kazhdan criterion
by: Sun, B., et al.
Published: (2014)