Gender prediction for a multiethnic population via deep learning across different retinal fundus photograph fields: Retrospective cross-sectional study
10.2196/25165
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Review |
Published: |
JMIR Publications Inc.
2022
|
Subjects: | |
Online Access: | https://scholarbank.nus.edu.sg/handle/10635/232429 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | National University of Singapore |
id |
sg-nus-scholar.10635-232429 |
---|---|
record_format |
dspace |
spelling |
sg-nus-scholar.10635-2324292024-11-15T00:30:03Z Gender prediction for a multiethnic population via deep learning across different retinal fundus photograph fields: Retrospective cross-sectional study Betzler, Bjorn Kaijun Yang, Henrik Hee Seung Thakur, Sahil Yu, Marco Quek, Ten Cheer Da Soh, Zhi Lee, Geunyoung Tham, Yih-Chung Wong, Tien Yin Rim, Tyler Hyungtaek Cheng, Ching-Yu DEAN'S OFFICE (DUKE-NUS MEDICAL SCHOOL) DUKE-NUS MEDICAL SCHOOL OPHTHALMOLOGY Artificial intelligence Deep learning Gender Ophthalmology Retina 10.2196/25165 JMIR Medical Informatics 9 8 e25165 2022-10-12T08:04:02Z 2022-10-12T08:04:02Z 2021-08-17 Review Betzler, Bjorn Kaijun, Yang, Henrik Hee Seung, Thakur, Sahil, Yu, Marco, Quek, Ten Cheer, Da Soh, Zhi, Lee, Geunyoung, Tham, Yih-Chung, Wong, Tien Yin, Rim, Tyler Hyungtaek, Cheng, Ching-Yu (2021-08-17). Gender prediction for a multiethnic population via deep learning across different retinal fundus photograph fields: Retrospective cross-sectional study. JMIR Medical Informatics 9 (8) : e25165. ScholarBank@NUS Repository. https://doi.org/10.2196/25165 2291-9694 https://scholarbank.nus.edu.sg/handle/10635/232429 Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/ JMIR Publications Inc. Scopus OA2021 |
institution |
National University of Singapore |
building |
NUS Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NUS Library |
collection |
ScholarBank@NUS |
topic |
Artificial intelligence Deep learning Gender Ophthalmology Retina |
spellingShingle |
Artificial intelligence Deep learning Gender Ophthalmology Retina Betzler, Bjorn Kaijun Yang, Henrik Hee Seung Thakur, Sahil Yu, Marco Quek, Ten Cheer Da Soh, Zhi Lee, Geunyoung Tham, Yih-Chung Wong, Tien Yin Rim, Tyler Hyungtaek Cheng, Ching-Yu Gender prediction for a multiethnic population via deep learning across different retinal fundus photograph fields: Retrospective cross-sectional study |
description |
10.2196/25165 |
author2 |
DEAN'S OFFICE (DUKE-NUS MEDICAL SCHOOL) |
author_facet |
DEAN'S OFFICE (DUKE-NUS MEDICAL SCHOOL) Betzler, Bjorn Kaijun Yang, Henrik Hee Seung Thakur, Sahil Yu, Marco Quek, Ten Cheer Da Soh, Zhi Lee, Geunyoung Tham, Yih-Chung Wong, Tien Yin Rim, Tyler Hyungtaek Cheng, Ching-Yu |
format |
Review |
author |
Betzler, Bjorn Kaijun Yang, Henrik Hee Seung Thakur, Sahil Yu, Marco Quek, Ten Cheer Da Soh, Zhi Lee, Geunyoung Tham, Yih-Chung Wong, Tien Yin Rim, Tyler Hyungtaek Cheng, Ching-Yu |
author_sort |
Betzler, Bjorn Kaijun |
title |
Gender prediction for a multiethnic population via deep learning across different retinal fundus photograph fields: Retrospective cross-sectional study |
title_short |
Gender prediction for a multiethnic population via deep learning across different retinal fundus photograph fields: Retrospective cross-sectional study |
title_full |
Gender prediction for a multiethnic population via deep learning across different retinal fundus photograph fields: Retrospective cross-sectional study |
title_fullStr |
Gender prediction for a multiethnic population via deep learning across different retinal fundus photograph fields: Retrospective cross-sectional study |
title_full_unstemmed |
Gender prediction for a multiethnic population via deep learning across different retinal fundus photograph fields: Retrospective cross-sectional study |
title_sort |
gender prediction for a multiethnic population via deep learning across different retinal fundus photograph fields: retrospective cross-sectional study |
publisher |
JMIR Publications Inc. |
publishDate |
2022 |
url |
https://scholarbank.nus.edu.sg/handle/10635/232429 |
_version_ |
1821182616335810560 |