Artificial Intelligence Based Intrusion Detection System for IEC 61850 Sampled Values under Symmetric and Asymmetric Faults

10.1109/access.2021.3071141

Saved in:
Bibliographic Details
Main Authors: Ustun, Taha Selim, Hussain, S. M. Suhail, Yavuz, Levent, Onen, Ahmet
Other Authors: DEPARTMENT OF COMPUTER SCIENCE
Format: Article
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:https://scholarbank.nus.edu.sg/handle/10635/232547
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-232547
record_format dspace
spelling sg-nus-scholar.10635-2325472024-11-08T21:21:22Z Artificial Intelligence Based Intrusion Detection System for IEC 61850 Sampled Values under Symmetric and Asymmetric Faults Ustun, Taha Selim Hussain, S. M. Suhail Yavuz, Levent Onen, Ahmet DEPARTMENT OF COMPUTER SCIENCE artificial intelligence IEC 62351 IEEE 14-bus system intrusion detection renewable energy Smartgrid cybersecurity SV message security 10.1109/access.2021.3071141 IEEE Access 9 56486-56495 2022-10-12T08:12:03Z 2022-10-12T08:12:03Z 2021-01-01 Article Ustun, Taha Selim, Hussain, S. M. Suhail, Yavuz, Levent, Onen, Ahmet (2021-01-01). Artificial Intelligence Based Intrusion Detection System for IEC 61850 Sampled Values under Symmetric and Asymmetric Faults. IEEE Access 9 : 56486-56495. ScholarBank@NUS Repository. https://doi.org/10.1109/access.2021.3071141 2169-3536 https://scholarbank.nus.edu.sg/handle/10635/232547 Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/ Institute of Electrical and Electronics Engineers Inc. Scopus OA2021
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic artificial intelligence
IEC 62351
IEEE 14-bus system
intrusion detection
renewable energy
Smartgrid cybersecurity
SV message security
spellingShingle artificial intelligence
IEC 62351
IEEE 14-bus system
intrusion detection
renewable energy
Smartgrid cybersecurity
SV message security
Ustun, Taha Selim
Hussain, S. M. Suhail
Yavuz, Levent
Onen, Ahmet
Artificial Intelligence Based Intrusion Detection System for IEC 61850 Sampled Values under Symmetric and Asymmetric Faults
description 10.1109/access.2021.3071141
author2 DEPARTMENT OF COMPUTER SCIENCE
author_facet DEPARTMENT OF COMPUTER SCIENCE
Ustun, Taha Selim
Hussain, S. M. Suhail
Yavuz, Levent
Onen, Ahmet
format Article
author Ustun, Taha Selim
Hussain, S. M. Suhail
Yavuz, Levent
Onen, Ahmet
author_sort Ustun, Taha Selim
title Artificial Intelligence Based Intrusion Detection System for IEC 61850 Sampled Values under Symmetric and Asymmetric Faults
title_short Artificial Intelligence Based Intrusion Detection System for IEC 61850 Sampled Values under Symmetric and Asymmetric Faults
title_full Artificial Intelligence Based Intrusion Detection System for IEC 61850 Sampled Values under Symmetric and Asymmetric Faults
title_fullStr Artificial Intelligence Based Intrusion Detection System for IEC 61850 Sampled Values under Symmetric and Asymmetric Faults
title_full_unstemmed Artificial Intelligence Based Intrusion Detection System for IEC 61850 Sampled Values under Symmetric and Asymmetric Faults
title_sort artificial intelligence based intrusion detection system for iec 61850 sampled values under symmetric and asymmetric faults
publisher Institute of Electrical and Electronics Engineers Inc.
publishDate 2022
url https://scholarbank.nus.edu.sg/handle/10635/232547
_version_ 1821198536683814912