Using Under-Trained Deep Ensembles to Learn under Extreme Label Noise: A Case Study for Sleep Apnea Detection
10.1109/access.2021.3067455
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Institute of Electrical and Electronics Engineers Inc.
2022
|
Subjects: | |
Online Access: | https://scholarbank.nus.edu.sg/handle/10635/232870 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | National University of Singapore |
id |
sg-nus-scholar.10635-232870 |
---|---|
record_format |
dspace |
spelling |
sg-nus-scholar.10635-2328702024-11-09T05:31:38Z Using Under-Trained Deep Ensembles to Learn under Extreme Label Noise: A Case Study for Sleep Apnea Detection Nikolaidis, Konstantinos Plagemann, Thomas Kristiansen, Stein Goebel, Vera Kankanhalli, Mohan DEPARTMENT OF INFORMATION SYSTEMS AND ANALYTICS Biomedical informatics label noise machine learning sleep apnea supervised learning 10.1109/access.2021.3067455 IEEE Access 9 45919-45934 2022-10-13T01:16:03Z 2022-10-13T01:16:03Z 2021-01-01 Article Nikolaidis, Konstantinos, Plagemann, Thomas, Kristiansen, Stein, Goebel, Vera, Kankanhalli, Mohan (2021-01-01). Using Under-Trained Deep Ensembles to Learn under Extreme Label Noise: A Case Study for Sleep Apnea Detection. IEEE Access 9 : 45919-45934. ScholarBank@NUS Repository. https://doi.org/10.1109/access.2021.3067455 2169-3536 https://scholarbank.nus.edu.sg/handle/10635/232870 Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/ Institute of Electrical and Electronics Engineers Inc. Scopus OA2021 |
institution |
National University of Singapore |
building |
NUS Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NUS Library |
collection |
ScholarBank@NUS |
topic |
Biomedical informatics label noise machine learning sleep apnea supervised learning |
spellingShingle |
Biomedical informatics label noise machine learning sleep apnea supervised learning Nikolaidis, Konstantinos Plagemann, Thomas Kristiansen, Stein Goebel, Vera Kankanhalli, Mohan Using Under-Trained Deep Ensembles to Learn under Extreme Label Noise: A Case Study for Sleep Apnea Detection |
description |
10.1109/access.2021.3067455 |
author2 |
DEPARTMENT OF INFORMATION SYSTEMS AND ANALYTICS |
author_facet |
DEPARTMENT OF INFORMATION SYSTEMS AND ANALYTICS Nikolaidis, Konstantinos Plagemann, Thomas Kristiansen, Stein Goebel, Vera Kankanhalli, Mohan |
format |
Article |
author |
Nikolaidis, Konstantinos Plagemann, Thomas Kristiansen, Stein Goebel, Vera Kankanhalli, Mohan |
author_sort |
Nikolaidis, Konstantinos |
title |
Using Under-Trained Deep Ensembles to Learn under Extreme Label Noise: A Case Study for Sleep Apnea Detection |
title_short |
Using Under-Trained Deep Ensembles to Learn under Extreme Label Noise: A Case Study for Sleep Apnea Detection |
title_full |
Using Under-Trained Deep Ensembles to Learn under Extreme Label Noise: A Case Study for Sleep Apnea Detection |
title_fullStr |
Using Under-Trained Deep Ensembles to Learn under Extreme Label Noise: A Case Study for Sleep Apnea Detection |
title_full_unstemmed |
Using Under-Trained Deep Ensembles to Learn under Extreme Label Noise: A Case Study for Sleep Apnea Detection |
title_sort |
using under-trained deep ensembles to learn under extreme label noise: a case study for sleep apnea detection |
publisher |
Institute of Electrical and Electronics Engineers Inc. |
publishDate |
2022 |
url |
https://scholarbank.nus.edu.sg/handle/10635/232870 |
_version_ |
1821205304506843136 |