Using Under-Trained Deep Ensembles to Learn under Extreme Label Noise: A Case Study for Sleep Apnea Detection

10.1109/access.2021.3067455

Saved in:
Bibliographic Details
Main Authors: Nikolaidis, Konstantinos, Plagemann, Thomas, Kristiansen, Stein, Goebel, Vera, Kankanhalli, Mohan
Other Authors: DEPARTMENT OF INFORMATION SYSTEMS AND ANALYTICS
Format: Article
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:https://scholarbank.nus.edu.sg/handle/10635/232870
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-232870
record_format dspace
spelling sg-nus-scholar.10635-2328702024-11-09T05:31:38Z Using Under-Trained Deep Ensembles to Learn under Extreme Label Noise: A Case Study for Sleep Apnea Detection Nikolaidis, Konstantinos Plagemann, Thomas Kristiansen, Stein Goebel, Vera Kankanhalli, Mohan DEPARTMENT OF INFORMATION SYSTEMS AND ANALYTICS Biomedical informatics label noise machine learning sleep apnea supervised learning 10.1109/access.2021.3067455 IEEE Access 9 45919-45934 2022-10-13T01:16:03Z 2022-10-13T01:16:03Z 2021-01-01 Article Nikolaidis, Konstantinos, Plagemann, Thomas, Kristiansen, Stein, Goebel, Vera, Kankanhalli, Mohan (2021-01-01). Using Under-Trained Deep Ensembles to Learn under Extreme Label Noise: A Case Study for Sleep Apnea Detection. IEEE Access 9 : 45919-45934. ScholarBank@NUS Repository. https://doi.org/10.1109/access.2021.3067455 2169-3536 https://scholarbank.nus.edu.sg/handle/10635/232870 Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/ Institute of Electrical and Electronics Engineers Inc. Scopus OA2021
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic Biomedical informatics
label noise
machine learning
sleep apnea
supervised learning
spellingShingle Biomedical informatics
label noise
machine learning
sleep apnea
supervised learning
Nikolaidis, Konstantinos
Plagemann, Thomas
Kristiansen, Stein
Goebel, Vera
Kankanhalli, Mohan
Using Under-Trained Deep Ensembles to Learn under Extreme Label Noise: A Case Study for Sleep Apnea Detection
description 10.1109/access.2021.3067455
author2 DEPARTMENT OF INFORMATION SYSTEMS AND ANALYTICS
author_facet DEPARTMENT OF INFORMATION SYSTEMS AND ANALYTICS
Nikolaidis, Konstantinos
Plagemann, Thomas
Kristiansen, Stein
Goebel, Vera
Kankanhalli, Mohan
format Article
author Nikolaidis, Konstantinos
Plagemann, Thomas
Kristiansen, Stein
Goebel, Vera
Kankanhalli, Mohan
author_sort Nikolaidis, Konstantinos
title Using Under-Trained Deep Ensembles to Learn under Extreme Label Noise: A Case Study for Sleep Apnea Detection
title_short Using Under-Trained Deep Ensembles to Learn under Extreme Label Noise: A Case Study for Sleep Apnea Detection
title_full Using Under-Trained Deep Ensembles to Learn under Extreme Label Noise: A Case Study for Sleep Apnea Detection
title_fullStr Using Under-Trained Deep Ensembles to Learn under Extreme Label Noise: A Case Study for Sleep Apnea Detection
title_full_unstemmed Using Under-Trained Deep Ensembles to Learn under Extreme Label Noise: A Case Study for Sleep Apnea Detection
title_sort using under-trained deep ensembles to learn under extreme label noise: a case study for sleep apnea detection
publisher Institute of Electrical and Electronics Engineers Inc.
publishDate 2022
url https://scholarbank.nus.edu.sg/handle/10635/232870
_version_ 1821205304506843136