Identification of 27 abnormalities from multi-lead ECG signals: An ensembled SE_ResNet framework with Sign Loss function

10.1088/1361-6579/ac08e6

Saved in:
Bibliographic Details
Main Authors: Zhu, Zhaowei, Lan, Xiang, Zhao, Tingting, Guo, Yangming, Kojodjojo, Pipin, Xu, Zhuoyang, Liu, Zhuo, Liu, Siqi, Wang, Han, Sun, Xingzhi, Feng, Mengling
Other Authors: SAW SWEE HOCK SCHOOL OF PUBLIC HEALTH
Format: Article
Published: IOP Publishing Ltd 2022
Subjects:
Online Access:https://scholarbank.nus.edu.sg/handle/10635/232924
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-232924
record_format dspace
spelling sg-nus-scholar.10635-2329242024-04-17T09:53:06Z Identification of 27 abnormalities from multi-lead ECG signals: An ensembled SE_ResNet framework with Sign Loss function Zhu, Zhaowei Lan, Xiang Zhao, Tingting Guo, Yangming Kojodjojo, Pipin Xu, Zhuoyang Liu, Zhuo Liu, Siqi Wang, Han Sun, Xingzhi Feng, Mengling SAW SWEE HOCK SCHOOL OF PUBLIC HEALTH MEDICINE Deep neural network Ecg abnormalities Ecg signal Ensemble modeling Multi-label classification 10.1088/1361-6579/ac08e6 Physiological Measurement 42 6 065008 2022-10-13T01:19:13Z 2022-10-13T01:19:13Z 2021-06-01 Article Zhu, Zhaowei, Lan, Xiang, Zhao, Tingting, Guo, Yangming, Kojodjojo, Pipin, Xu, Zhuoyang, Liu, Zhuo, Liu, Siqi, Wang, Han, Sun, Xingzhi, Feng, Mengling (2021-06-01). Identification of 27 abnormalities from multi-lead ECG signals: An ensembled SE_ResNet framework with Sign Loss function. Physiological Measurement 42 (6) : 065008. ScholarBank@NUS Repository. https://doi.org/10.1088/1361-6579/ac08e6 0967-3334 https://scholarbank.nus.edu.sg/handle/10635/232924 Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/ IOP Publishing Ltd Scopus OA2021
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic Deep neural network
Ecg abnormalities
Ecg signal
Ensemble modeling
Multi-label classification
spellingShingle Deep neural network
Ecg abnormalities
Ecg signal
Ensemble modeling
Multi-label classification
Zhu, Zhaowei
Lan, Xiang
Zhao, Tingting
Guo, Yangming
Kojodjojo, Pipin
Xu, Zhuoyang
Liu, Zhuo
Liu, Siqi
Wang, Han
Sun, Xingzhi
Feng, Mengling
Identification of 27 abnormalities from multi-lead ECG signals: An ensembled SE_ResNet framework with Sign Loss function
description 10.1088/1361-6579/ac08e6
author2 SAW SWEE HOCK SCHOOL OF PUBLIC HEALTH
author_facet SAW SWEE HOCK SCHOOL OF PUBLIC HEALTH
Zhu, Zhaowei
Lan, Xiang
Zhao, Tingting
Guo, Yangming
Kojodjojo, Pipin
Xu, Zhuoyang
Liu, Zhuo
Liu, Siqi
Wang, Han
Sun, Xingzhi
Feng, Mengling
format Article
author Zhu, Zhaowei
Lan, Xiang
Zhao, Tingting
Guo, Yangming
Kojodjojo, Pipin
Xu, Zhuoyang
Liu, Zhuo
Liu, Siqi
Wang, Han
Sun, Xingzhi
Feng, Mengling
author_sort Zhu, Zhaowei
title Identification of 27 abnormalities from multi-lead ECG signals: An ensembled SE_ResNet framework with Sign Loss function
title_short Identification of 27 abnormalities from multi-lead ECG signals: An ensembled SE_ResNet framework with Sign Loss function
title_full Identification of 27 abnormalities from multi-lead ECG signals: An ensembled SE_ResNet framework with Sign Loss function
title_fullStr Identification of 27 abnormalities from multi-lead ECG signals: An ensembled SE_ResNet framework with Sign Loss function
title_full_unstemmed Identification of 27 abnormalities from multi-lead ECG signals: An ensembled SE_ResNet framework with Sign Loss function
title_sort identification of 27 abnormalities from multi-lead ecg signals: an ensembled se_resnet framework with sign loss function
publisher IOP Publishing Ltd
publishDate 2022
url https://scholarbank.nus.edu.sg/handle/10635/232924
_version_ 1800915643597324288