The G-Wishart Weighted Proposal Algorithm: Efficient Posterior Computation for Gaussian Graphical Models

Journal of Computational and Graphical Statistics

Saved in:
Bibliographic Details
Main Authors: Willem van den Boom, Alexandros Beskos, Maria De Iorio
Other Authors: YALE-NUS COLLEGE
Format: Article
Published: Taylor & Francis 2022
Online Access:https://scholarbank.nus.edu.sg/handle/10635/235556
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-235556
record_format dspace
spelling sg-nus-scholar.10635-2355562024-04-03T05:48:11Z The G-Wishart Weighted Proposal Algorithm: Efficient Posterior Computation for Gaussian Graphical Models Willem van den Boom Alexandros Beskos Maria De Iorio YALE-NUS COLLEGE STATISTICS & APPLIED PROBABILITY DEAN'S OFFICE (YALE-NUS COLLEGE) Journal of Computational and Graphical Statistics 31 4 1215-1224 2022-12-14T02:26:13Z 2022-12-14T02:26:13Z 2022-04-04 Article Willem van den Boom, Alexandros Beskos, Maria De Iorio (2022-04-04). The G-Wishart Weighted Proposal Algorithm: Efficient Posterior Computation for Gaussian Graphical Models. Journal of Computational and Graphical Statistics 31 (4) : 1215-1224. ScholarBank@NUS Repository. 1061-8600 https://scholarbank.nus.edu.sg/handle/10635/235556 Taylor & Francis Taylor & Francis
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
description Journal of Computational and Graphical Statistics
author2 YALE-NUS COLLEGE
author_facet YALE-NUS COLLEGE
Willem van den Boom
Alexandros Beskos
Maria De Iorio
format Article
author Willem van den Boom
Alexandros Beskos
Maria De Iorio
spellingShingle Willem van den Boom
Alexandros Beskos
Maria De Iorio
The G-Wishart Weighted Proposal Algorithm: Efficient Posterior Computation for Gaussian Graphical Models
author_sort Willem van den Boom
title The G-Wishart Weighted Proposal Algorithm: Efficient Posterior Computation for Gaussian Graphical Models
title_short The G-Wishart Weighted Proposal Algorithm: Efficient Posterior Computation for Gaussian Graphical Models
title_full The G-Wishart Weighted Proposal Algorithm: Efficient Posterior Computation for Gaussian Graphical Models
title_fullStr The G-Wishart Weighted Proposal Algorithm: Efficient Posterior Computation for Gaussian Graphical Models
title_full_unstemmed The G-Wishart Weighted Proposal Algorithm: Efficient Posterior Computation for Gaussian Graphical Models
title_sort g-wishart weighted proposal algorithm: efficient posterior computation for gaussian graphical models
publisher Taylor & Francis
publishDate 2022
url https://scholarbank.nus.edu.sg/handle/10635/235556
_version_ 1795374973775249408