Machine Learning-Derived Prenatal Predictive Risk Model to Guide Intervention and Prevent the Progression of Gestational Diabetes Mellitus to Type 2 Diabetes: Prediction Model Development Study

10.2196/32366

Saved in:
Bibliographic Details
Main Authors: Kumar M., Ang L.T., Ho C., Soh S.E., Tan K.H., Chan J.K.Y., Godfrey K.M., Chan S.-Y., Chong Y.S., Eriksson J.G., Feng M., Karnani N.
Other Authors: BIOCHEMISTRY
Format: Article
Published: JMIR Publications Inc. 2023
Subjects:
Online Access:https://scholarbank.nus.edu.sg/handle/10635/237341
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-237341
record_format dspace
spelling sg-nus-scholar.10635-2373412024-04-24T06:13:44Z Machine Learning-Derived Prenatal Predictive Risk Model to Guide Intervention and Prevent the Progression of Gestational Diabetes Mellitus to Type 2 Diabetes: Prediction Model Development Study Kumar M. Ang L.T. Ho C. Soh S.E. Tan K.H. Chan J.K.Y. Godfrey K.M. Chan S.-Y. Chong Y.S. Eriksson J.G. Feng M. Karnani N. BIOCHEMISTRY OBSTETRICS & GYNAECOLOGY DEAN'S OFFICE (DUKE-NUS MEDICAL SCHOOL) DEAN'S OFFICE (MEDICINE) PAEDIATRICS DUKE-NUS MEDICAL SCHOOL SAW SWEE HOCK SCHOOL OF PUBLIC HEALTH Asian populations diabetes management digital health gestational diabetes mellitus machine learning prediction models prenatal care public health risk factors type 2 diabetes 10.2196/32366 JMIR Diabetes 7 3 e32366 2023-02-20T08:56:55Z 2023-02-20T08:56:55Z 2022 Article Kumar M., Ang L.T., Ho C., Soh S.E., Tan K.H., Chan J.K.Y., Godfrey K.M., Chan S.-Y., Chong Y.S., Eriksson J.G., Feng M., Karnani N. (2022). Machine Learning-Derived Prenatal Predictive Risk Model to Guide Intervention and Prevent the Progression of Gestational Diabetes Mellitus to Type 2 Diabetes: Prediction Model Development Study. JMIR Diabetes 7 (3) : e32366. ScholarBank@NUS Repository. https://doi.org/10.2196/32366 2371-4379 https://scholarbank.nus.edu.sg/handle/10635/237341 JMIR Publications Inc. Scopus
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic Asian populations
diabetes management
digital health
gestational diabetes mellitus
machine learning
prediction models
prenatal care
public health
risk factors
type 2 diabetes
spellingShingle Asian populations
diabetes management
digital health
gestational diabetes mellitus
machine learning
prediction models
prenatal care
public health
risk factors
type 2 diabetes
Kumar M.
Ang L.T.
Ho C.
Soh S.E.
Tan K.H.
Chan J.K.Y.
Godfrey K.M.
Chan S.-Y.
Chong Y.S.
Eriksson J.G.
Feng M.
Karnani N.
Machine Learning-Derived Prenatal Predictive Risk Model to Guide Intervention and Prevent the Progression of Gestational Diabetes Mellitus to Type 2 Diabetes: Prediction Model Development Study
description 10.2196/32366
author2 BIOCHEMISTRY
author_facet BIOCHEMISTRY
Kumar M.
Ang L.T.
Ho C.
Soh S.E.
Tan K.H.
Chan J.K.Y.
Godfrey K.M.
Chan S.-Y.
Chong Y.S.
Eriksson J.G.
Feng M.
Karnani N.
format Article
author Kumar M.
Ang L.T.
Ho C.
Soh S.E.
Tan K.H.
Chan J.K.Y.
Godfrey K.M.
Chan S.-Y.
Chong Y.S.
Eriksson J.G.
Feng M.
Karnani N.
author_sort Kumar M.
title Machine Learning-Derived Prenatal Predictive Risk Model to Guide Intervention and Prevent the Progression of Gestational Diabetes Mellitus to Type 2 Diabetes: Prediction Model Development Study
title_short Machine Learning-Derived Prenatal Predictive Risk Model to Guide Intervention and Prevent the Progression of Gestational Diabetes Mellitus to Type 2 Diabetes: Prediction Model Development Study
title_full Machine Learning-Derived Prenatal Predictive Risk Model to Guide Intervention and Prevent the Progression of Gestational Diabetes Mellitus to Type 2 Diabetes: Prediction Model Development Study
title_fullStr Machine Learning-Derived Prenatal Predictive Risk Model to Guide Intervention and Prevent the Progression of Gestational Diabetes Mellitus to Type 2 Diabetes: Prediction Model Development Study
title_full_unstemmed Machine Learning-Derived Prenatal Predictive Risk Model to Guide Intervention and Prevent the Progression of Gestational Diabetes Mellitus to Type 2 Diabetes: Prediction Model Development Study
title_sort machine learning-derived prenatal predictive risk model to guide intervention and prevent the progression of gestational diabetes mellitus to type 2 diabetes: prediction model development study
publisher JMIR Publications Inc.
publishDate 2023
url https://scholarbank.nus.edu.sg/handle/10635/237341
_version_ 1800915781230264320