Classification of the Residues after High and Low Order Explosions Using Machine Learning Techniques on Fourier Transform Infrared (FTIR) Spectra

10.3390/molecules28052233

Saved in:
Bibliographic Details
Main Authors: Banas, Agnieszka M, Banas, Krzysztof, Breese, Mark BH
Other Authors: PHYSICS
Format: Article
Language:English
Published: MDPI 2023
Subjects:
Online Access:https://scholarbank.nus.edu.sg/handle/10635/243051
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
Language: English
id sg-nus-scholar.10635-243051
record_format dspace
spelling sg-nus-scholar.10635-2430512024-11-14T18:38:57Z Classification of the Residues after High and Low Order Explosions Using Machine Learning Techniques on Fourier Transform Infrared (FTIR) Spectra Banas, Agnieszka M Banas, Krzysztof Breese, Mark BH PHYSICS SINGAPORE SYNCHROTRON LIGHT SOURCE Dr Krzysztof Banas Science & Technology Life Sciences & Biomedicine Physical Sciences Biochemistry & Molecular Biology Chemistry, Multidisciplinary Chemistry high and low order explosions machine learning techniques Fourier Transform Infrared (FTIR) spectroscopy spectral analysis explosive residues SPECTROSCOPY 10.3390/molecules28052233 MOLECULES 28 5 2023-07-12T06:17:04Z 2023-07-12T06:17:04Z 2023-03 2023-07-12T03:54:12Z Article Banas, Agnieszka M, Banas, Krzysztof, Breese, Mark BH (2023-03). Classification of the Residues after High and Low Order Explosions Using Machine Learning Techniques on Fourier Transform Infrared (FTIR) Spectra. MOLECULES 28 (5). ScholarBank@NUS Repository. https://doi.org/10.3390/molecules28052233 1420-3049 https://scholarbank.nus.edu.sg/handle/10635/243051 en MDPI Elements
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
language English
topic Science & Technology
Life Sciences & Biomedicine
Physical Sciences
Biochemistry & Molecular Biology
Chemistry, Multidisciplinary
Chemistry
high and low order explosions
machine learning techniques
Fourier Transform Infrared (FTIR) spectroscopy
spectral analysis
explosive residues
SPECTROSCOPY
spellingShingle Science & Technology
Life Sciences & Biomedicine
Physical Sciences
Biochemistry & Molecular Biology
Chemistry, Multidisciplinary
Chemistry
high and low order explosions
machine learning techniques
Fourier Transform Infrared (FTIR) spectroscopy
spectral analysis
explosive residues
SPECTROSCOPY
Banas, Agnieszka M
Banas, Krzysztof
Breese, Mark BH
Classification of the Residues after High and Low Order Explosions Using Machine Learning Techniques on Fourier Transform Infrared (FTIR) Spectra
description 10.3390/molecules28052233
author2 PHYSICS
author_facet PHYSICS
Banas, Agnieszka M
Banas, Krzysztof
Breese, Mark BH
format Article
author Banas, Agnieszka M
Banas, Krzysztof
Breese, Mark BH
author_sort Banas, Agnieszka M
title Classification of the Residues after High and Low Order Explosions Using Machine Learning Techniques on Fourier Transform Infrared (FTIR) Spectra
title_short Classification of the Residues after High and Low Order Explosions Using Machine Learning Techniques on Fourier Transform Infrared (FTIR) Spectra
title_full Classification of the Residues after High and Low Order Explosions Using Machine Learning Techniques on Fourier Transform Infrared (FTIR) Spectra
title_fullStr Classification of the Residues after High and Low Order Explosions Using Machine Learning Techniques on Fourier Transform Infrared (FTIR) Spectra
title_full_unstemmed Classification of the Residues after High and Low Order Explosions Using Machine Learning Techniques on Fourier Transform Infrared (FTIR) Spectra
title_sort classification of the residues after high and low order explosions using machine learning techniques on fourier transform infrared (ftir) spectra
publisher MDPI
publishDate 2023
url https://scholarbank.nus.edu.sg/handle/10635/243051
_version_ 1821195381031043072