Classification of the Residues after High and Low Order Explosions Using Machine Learning Techniques on Fourier Transform Infrared (FTIR) Spectra
10.3390/molecules28052233
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
MDPI
2023
|
Subjects: | |
Online Access: | https://scholarbank.nus.edu.sg/handle/10635/243051 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | National University of Singapore |
Language: | English |
id |
sg-nus-scholar.10635-243051 |
---|---|
record_format |
dspace |
spelling |
sg-nus-scholar.10635-2430512024-11-14T18:38:57Z Classification of the Residues after High and Low Order Explosions Using Machine Learning Techniques on Fourier Transform Infrared (FTIR) Spectra Banas, Agnieszka M Banas, Krzysztof Breese, Mark BH PHYSICS SINGAPORE SYNCHROTRON LIGHT SOURCE Dr Krzysztof Banas Science & Technology Life Sciences & Biomedicine Physical Sciences Biochemistry & Molecular Biology Chemistry, Multidisciplinary Chemistry high and low order explosions machine learning techniques Fourier Transform Infrared (FTIR) spectroscopy spectral analysis explosive residues SPECTROSCOPY 10.3390/molecules28052233 MOLECULES 28 5 2023-07-12T06:17:04Z 2023-07-12T06:17:04Z 2023-03 2023-07-12T03:54:12Z Article Banas, Agnieszka M, Banas, Krzysztof, Breese, Mark BH (2023-03). Classification of the Residues after High and Low Order Explosions Using Machine Learning Techniques on Fourier Transform Infrared (FTIR) Spectra. MOLECULES 28 (5). ScholarBank@NUS Repository. https://doi.org/10.3390/molecules28052233 1420-3049 https://scholarbank.nus.edu.sg/handle/10635/243051 en MDPI Elements |
institution |
National University of Singapore |
building |
NUS Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NUS Library |
collection |
ScholarBank@NUS |
language |
English |
topic |
Science & Technology Life Sciences & Biomedicine Physical Sciences Biochemistry & Molecular Biology Chemistry, Multidisciplinary Chemistry high and low order explosions machine learning techniques Fourier Transform Infrared (FTIR) spectroscopy spectral analysis explosive residues SPECTROSCOPY |
spellingShingle |
Science & Technology Life Sciences & Biomedicine Physical Sciences Biochemistry & Molecular Biology Chemistry, Multidisciplinary Chemistry high and low order explosions machine learning techniques Fourier Transform Infrared (FTIR) spectroscopy spectral analysis explosive residues SPECTROSCOPY Banas, Agnieszka M Banas, Krzysztof Breese, Mark BH Classification of the Residues after High and Low Order Explosions Using Machine Learning Techniques on Fourier Transform Infrared (FTIR) Spectra |
description |
10.3390/molecules28052233 |
author2 |
PHYSICS |
author_facet |
PHYSICS Banas, Agnieszka M Banas, Krzysztof Breese, Mark BH |
format |
Article |
author |
Banas, Agnieszka M Banas, Krzysztof Breese, Mark BH |
author_sort |
Banas, Agnieszka M |
title |
Classification of the Residues after High and Low Order Explosions Using Machine Learning Techniques on Fourier Transform Infrared (FTIR) Spectra |
title_short |
Classification of the Residues after High and Low Order Explosions Using Machine Learning Techniques on Fourier Transform Infrared (FTIR) Spectra |
title_full |
Classification of the Residues after High and Low Order Explosions Using Machine Learning Techniques on Fourier Transform Infrared (FTIR) Spectra |
title_fullStr |
Classification of the Residues after High and Low Order Explosions Using Machine Learning Techniques on Fourier Transform Infrared (FTIR) Spectra |
title_full_unstemmed |
Classification of the Residues after High and Low Order Explosions Using Machine Learning Techniques on Fourier Transform Infrared (FTIR) Spectra |
title_sort |
classification of the residues after high and low order explosions using machine learning techniques on fourier transform infrared (ftir) spectra |
publisher |
MDPI |
publishDate |
2023 |
url |
https://scholarbank.nus.edu.sg/handle/10635/243051 |
_version_ |
1821195381031043072 |