Interpenetrating a Hollow Microlattice Metamaterial Enables Efficient Sound-Absorptive and Deformation-Recoverable Capabilities

10.1021/acsami.3c02498

Saved in:
Bibliographic Details
Main Authors: Li, Zhendong, Li, Xinwei, Wang, Xinxin, Wang, Zhonggang, Zhai, Wei
Other Authors: MECHANICAL ENGINEERING
Format: Article
Language:English
Published: AMER CHEMICAL SOC 2023
Subjects:
Online Access:https://scholarbank.nus.edu.sg/handle/10635/243362
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
Language: English
id sg-nus-scholar.10635-243362
record_format dspace
spelling sg-nus-scholar.10635-2433622024-11-14T20:26:44Z Interpenetrating a Hollow Microlattice Metamaterial Enables Efficient Sound-Absorptive and Deformation-Recoverable Capabilities Li, Zhendong Li, Xinwei Wang, Xinxin Wang, Zhonggang Zhai, Wei MECHANICAL ENGINEERING Dr Wei Zhai Science & Technology Technology Nanoscience & Nanotechnology Materials Science, Multidisciplinary Science & Technology - Other Topics Materials Science microlattice design multifunctional metamaterial sound absorption mechanical performance deformation recoverability LIGHTWEIGHT ULTRALIGHT 10.1021/acsami.3c02498 ACS APPLIED MATERIALS & INTERFACES 15 20 24868-24879 2023-07-24T06:46:05Z 2023-07-24T06:46:05Z 2023-04-22 2023-07-21T05:28:22Z Article Li, Zhendong, Li, Xinwei, Wang, Xinxin, Wang, Zhonggang, Zhai, Wei (2023-04-22). Interpenetrating a Hollow Microlattice Metamaterial Enables Efficient Sound-Absorptive and Deformation-Recoverable Capabilities. ACS APPLIED MATERIALS & INTERFACES 15 (20) : 24868-24879. ScholarBank@NUS Repository. https://doi.org/10.1021/acsami.3c02498 1944-8244 1944-8252 https://scholarbank.nus.edu.sg/handle/10635/243362 en AMER CHEMICAL SOC Elements
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
language English
topic Science & Technology
Technology
Nanoscience & Nanotechnology
Materials Science, Multidisciplinary
Science & Technology - Other Topics
Materials Science
microlattice design
multifunctional metamaterial
sound absorption
mechanical performance
deformation recoverability
LIGHTWEIGHT
ULTRALIGHT
spellingShingle Science & Technology
Technology
Nanoscience & Nanotechnology
Materials Science, Multidisciplinary
Science & Technology - Other Topics
Materials Science
microlattice design
multifunctional metamaterial
sound absorption
mechanical performance
deformation recoverability
LIGHTWEIGHT
ULTRALIGHT
Li, Zhendong
Li, Xinwei
Wang, Xinxin
Wang, Zhonggang
Zhai, Wei
Interpenetrating a Hollow Microlattice Metamaterial Enables Efficient Sound-Absorptive and Deformation-Recoverable Capabilities
description 10.1021/acsami.3c02498
author2 MECHANICAL ENGINEERING
author_facet MECHANICAL ENGINEERING
Li, Zhendong
Li, Xinwei
Wang, Xinxin
Wang, Zhonggang
Zhai, Wei
format Article
author Li, Zhendong
Li, Xinwei
Wang, Xinxin
Wang, Zhonggang
Zhai, Wei
author_sort Li, Zhendong
title Interpenetrating a Hollow Microlattice Metamaterial Enables Efficient Sound-Absorptive and Deformation-Recoverable Capabilities
title_short Interpenetrating a Hollow Microlattice Metamaterial Enables Efficient Sound-Absorptive and Deformation-Recoverable Capabilities
title_full Interpenetrating a Hollow Microlattice Metamaterial Enables Efficient Sound-Absorptive and Deformation-Recoverable Capabilities
title_fullStr Interpenetrating a Hollow Microlattice Metamaterial Enables Efficient Sound-Absorptive and Deformation-Recoverable Capabilities
title_full_unstemmed Interpenetrating a Hollow Microlattice Metamaterial Enables Efficient Sound-Absorptive and Deformation-Recoverable Capabilities
title_sort interpenetrating a hollow microlattice metamaterial enables efficient sound-absorptive and deformation-recoverable capabilities
publisher AMER CHEMICAL SOC
publishDate 2023
url https://scholarbank.nus.edu.sg/handle/10635/243362
_version_ 1821194359346823168