Predicting building characteristics at urban scale using graph neural networks and street-level context
10.1016/j.compenvurbsys.2024.102129
Saved in:
Main Authors: | Lei, Binyu, Liu, Pengyuan, Milojevic-Dupont, Nikola, Biljecki, Filip |
---|---|
其他作者: | ARCHITECTURE |
格式: | Article |
出版: |
Elsevier BV
2024
|
在線閱讀: | https://scholarbank.nus.edu.sg/handle/10635/248476 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | National University of Singapore |
相似書籍
-
Knowledge and topology: A two layer spatially dependent graph neural networks to identify urban functions with time-series street view image
由: Zhang, Yan, et al.
出版: (2023) -
Inventory of Open Government Building Data
由: Filip Biljecki, et al.
出版: (2021) -
Assessing global OpenStreetMap building completeness to generate large-scale 3D city models
由: Biljecki, Filip, et al.
出版: (2020) -
A review of spatially-explicit GeoAI applications in Urban Geography
由: Liu, Pengyuan, et al.
出版: (2022) -
Street view imagery in urban analytics and GIS: A review
由: Filip Biljecki, et al.
出版: (2021)