Harnessing the power of artificial intelligence in predicting all-cause mortality in transcatheter aortic valve replacement: a systematic review and meta-analysis

10.3389/fcvm.2024.1343210

Saved in:
Bibliographic Details
Main Authors: Sazzad, Faizus, Ler, Ashlynn Ai Li, Furqan, Mohammad Shaheryar, Tan, Linus Kai Zhe, Leo, Hwa Liang, Kuntjoro, Ivandito, Tay, Edgar, Kofidis, Theo
Other Authors: MEDICINE
Format: Article
Published: Frontiers Media SA 2024
Subjects:
Online Access:https://scholarbank.nus.edu.sg/handle/10635/248610
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-248610
record_format dspace
spelling sg-nus-scholar.10635-2486102024-11-15T11:22:42Z Harnessing the power of artificial intelligence in predicting all-cause mortality in transcatheter aortic valve replacement: a systematic review and meta-analysis Sazzad, Faizus Ler, Ashlynn Ai Li Furqan, Mohammad Shaheryar Tan, Linus Kai Zhe Leo, Hwa Liang Kuntjoro, Ivandito Tay, Edgar Kofidis, Theo MEDICINE SURGERY CANCER SCIENCE INSTITUTE OF SINGAPORE COLLEGE OF DESIGN AND ENGINEERING Dr Md Faizus Sazzad aortic valve replacement transcatheter systematic review transcatheter aortic valve prosthesis mortality artificial intelligence machine learning 10.3389/fcvm.2024.1343210 Frontiers in Cardiovascular Medicine 11 2024-06-03T08:17:29Z 2024-06-03T08:17:29Z 2024-05-31 2024-06-03T04:27:12Z Article Sazzad, Faizus, Ler, Ashlynn Ai Li, Furqan, Mohammad Shaheryar, Tan, Linus Kai Zhe, Leo, Hwa Liang, Kuntjoro, Ivandito, Tay, Edgar, Kofidis, Theo (2024-05-31). Harnessing the power of artificial intelligence in predicting all-cause mortality in transcatheter aortic valve replacement: a systematic review and meta-analysis. Frontiers in Cardiovascular Medicine 11. ScholarBank@NUS Repository. https://doi.org/10.3389/fcvm.2024.1343210 2297-055X https://scholarbank.nus.edu.sg/handle/10635/248610 Frontiers Media SA Elements
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic aortic valve replacement
transcatheter
systematic review
transcatheter aortic valve prosthesis
mortality
artificial intelligence
machine learning
spellingShingle aortic valve replacement
transcatheter
systematic review
transcatheter aortic valve prosthesis
mortality
artificial intelligence
machine learning
Sazzad, Faizus
Ler, Ashlynn Ai Li
Furqan, Mohammad Shaheryar
Tan, Linus Kai Zhe
Leo, Hwa Liang
Kuntjoro, Ivandito
Tay, Edgar
Kofidis, Theo
Harnessing the power of artificial intelligence in predicting all-cause mortality in transcatheter aortic valve replacement: a systematic review and meta-analysis
description 10.3389/fcvm.2024.1343210
author2 MEDICINE
author_facet MEDICINE
Sazzad, Faizus
Ler, Ashlynn Ai Li
Furqan, Mohammad Shaheryar
Tan, Linus Kai Zhe
Leo, Hwa Liang
Kuntjoro, Ivandito
Tay, Edgar
Kofidis, Theo
format Article
author Sazzad, Faizus
Ler, Ashlynn Ai Li
Furqan, Mohammad Shaheryar
Tan, Linus Kai Zhe
Leo, Hwa Liang
Kuntjoro, Ivandito
Tay, Edgar
Kofidis, Theo
author_sort Sazzad, Faizus
title Harnessing the power of artificial intelligence in predicting all-cause mortality in transcatheter aortic valve replacement: a systematic review and meta-analysis
title_short Harnessing the power of artificial intelligence in predicting all-cause mortality in transcatheter aortic valve replacement: a systematic review and meta-analysis
title_full Harnessing the power of artificial intelligence in predicting all-cause mortality in transcatheter aortic valve replacement: a systematic review and meta-analysis
title_fullStr Harnessing the power of artificial intelligence in predicting all-cause mortality in transcatheter aortic valve replacement: a systematic review and meta-analysis
title_full_unstemmed Harnessing the power of artificial intelligence in predicting all-cause mortality in transcatheter aortic valve replacement: a systematic review and meta-analysis
title_sort harnessing the power of artificial intelligence in predicting all-cause mortality in transcatheter aortic valve replacement: a systematic review and meta-analysis
publisher Frontiers Media SA
publishDate 2024
url https://scholarbank.nus.edu.sg/handle/10635/248610
_version_ 1821200203765514240